Extensible hyperplane nets

Abstract Extensible (polynomial) lattice point sets have the property that the number N of points in the node set of a quasi-Monte Carlo algorithm may be increased while retaining the existing points. Explicit constructions for extensible (polynomial) lattice point sets have been presented recently by Niederreiter and Pillichshammer. It is the aim of this paper to establish extensibility for a powerful generalization of polynomial lattice point sets, the so-called hyperplane nets.

[1]  Peter Kritzer,et al.  Constructions of general polynomial lattices for multivariate integration , 2007, Bulletin of the Australian Mathematical Society.

[2]  Harald Niederreiter,et al.  Digital Nets and Coding Theory , 2004 .

[3]  Fred J. Hickernell,et al.  The existence of good extensible rank-1 lattices , 2003, J. Complex..

[4]  Fred J. Hickernell,et al.  Extensible Lattice Sequences for Quasi-Monte Carlo Quadrature , 2000, SIAM J. Sci. Comput..

[5]  Fred J. Hickernell,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2000 , 2002 .

[6]  Josef Dick,et al.  The construction of extensible polynomial lattice rules with small weighted star discrepancy , 2007, Math. Comput..

[7]  Y. Edel,et al.  Coding‐theoretic constructions for (t,m,s)‐nets and ordered orthogonal arrays , 2002 .

[8]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[9]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[10]  H. Niederreiter,et al.  "Coding, Cryptography and Combinatorics" , 2012 .

[11]  Josef Dick,et al.  Cyclic Digital Nets, Hyperplane Nets, and Multivariate Integration in Sobolev Spaces , 2006, SIAM J. Numer. Anal..

[12]  Harald Niederreiter,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2006 , 2007 .

[13]  Harald Niederreiter,et al.  Matrix-product constructions of digital nets , 2004, Finite Fields Their Appl..

[14]  Harald Niederreiter,et al.  Low-discrepancy point sets obtained by digital constructions over finite fields , 1992 .

[15]  H. Niederreiter Point sets and sequences with small discrepancy , 1987 .

[16]  Josef Dick,et al.  Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces , 2005, J. Complex..

[17]  H. Niederreiter,et al.  Duality for digital nets and its applications , 2001 .

[18]  THE QUALITY PARAMETER OF CYCLIC NETS AND HYPERPLANE NETS , 2009 .

[19]  F. Pillichshammer,et al.  Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .

[20]  H. Niederreiter,et al.  A Kronecker Product Construction for Digital Nets , 2002 .

[21]  Harald Niederreiter,et al.  Constructions of (t, m, s)-nets and (t, s)-sequences , 2005, Finite Fields Their Appl..

[22]  Josef Dick,et al.  The construction of good extensible rank-1 lattices , 2008, Math. Comput..

[23]  Harald Niederreiter,et al.  The Existence of Good Extensible Polynomial Lattice Rules , 2003 .

[24]  Harald Niederreiter,et al.  Construction Algorithms for Good Extensible Lattice Rules , 2009 .

[25]  G. Pirsic A Small Taxonomy of Integration Node Sets , 2005 .

[26]  Harald Niederreiter,et al.  Nets, (t, s)-Sequences, and Codes , 2008 .

[27]  Friedrich Pillichshammer,et al.  Discrepancy of Hyperplane Nets and Cyclic Nets , 2009 .

[28]  Saburou Saitoh,et al.  Theory of Reproducing Kernels and Its Applications , 1988 .

[29]  Pierre L'Ecuyer,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2008 , 2009 .

[30]  Frances Y. Kuo,et al.  Construction algorithms for polynomial lattice rules for multivariate integration , 2005, Math. Comput..