APT with the Mobile Load Simulator MLS10 Towards Non-destructive Pavement Structural Analysis
暂无分享,去创建一个
In 2014 a research program has been started about non-destructive test methods to evaluate the structure of pavements. This task has been given to two research groups—first research group is led by RWTH Aachen University (Rheinisch-Westfalische Technische Hochschule) and the second by University of Siegen. This paper focuses on the initial findings of the running research program. The assessment of the existing infrastructure and its condition will be one of the main tasks during the next years in order to use the available budget for maintenance accurately and efficiently. Therefore, it is necessary to identify possible damages and examine their effects on the road construction. BASt (Federal Highway Research Institute) is using the Mobile Load Simulator MLS10 for accelerated pavement testing (APT) on different types of pavements. In addition to non-destructive test methods, sensors are applied to measure structural impacts. The overall objective of this research program is to develop a non-destructive test method that allows the calculation of the remaining life time and load cycles of pavements. To simulate realistic wheel loads in a short period of time the MLS10 on German full scale standard pavement constructions has been used. The first pavement test section was loaded with 3 × 106 50 kN wheel loads while the second, thinner pavement test section was loaded with 3 × 105 50 kN wheel loads. Both loads are equivalent to the pavement design load. Three different strategies have been used to analyze and monitor structural changes. The innovative measurements have been realized by the two research groups to collect data for their models. The RWTH Aachen collected data with twelve geophones aligned in a row parallel to the wheel path. The geophones measure the entire vertical deflection basin of the pavement surface that exists due to the passing real truck wheels. These measurements were done for different truck speeds and at different transverse distances to the wheel path. The University of Siegen collected data by using acceleration sensors on the surface of the road construction. After recording the data they were integrated into displacement signals and evaluated. Additionally to those measurements BASt used conventional equipment to monitor the pavement structure and surface characteristics. The measurements and evaluation tools used for the innovation program have a high potential to validate APT programs in the future. Based on this research it is possible to start further research activities to push the non-destructive evaluation of pavements structures—not only in APT—into an improved direction.