Entanglement-Assisted Entanglement Purification.

The efficient generation of high-fidelity entangled states is the key element for long-distance quantum communication, quantum computation, and other quantum technologies, and at the same time the most resource-consuming part in many schemes. We present a class of entanglement-assisted entanglement purification protocols that can generate high-fidelity entanglement from noisy, finite-size ensembles with improved yield and fidelity as compared to previous approaches. The scheme utilizes high-dimensional auxiliary entanglement to perform entangling nonlocal measurements and determine the number and positions of errors in an ensemble in a controlled and efficient way, without disturbing the entanglement of good pairs. Our protocols can deal with arbitrary errors, but are best suited for few errors, and work particularly well for decay noise. Our methods are applicable to moderately sized ensembles, as will be important for near term quantum devices.

[1]  B. Terhal,et al.  Roads towards fault-tolerant universal quantum computation , 2016, Nature.

[2]  Hoi-Kwong Lo,et al.  All-photonic quantum repeaters , 2013, Nature Communications.

[3]  A. Pirker,et al.  Multipartite state generation in quantum networks with optimal scaling , 2018, Scientific Reports.

[4]  J. Eisert,et al.  Quantum certification and benchmarking , 2019, Nature Reviews Physics.

[5]  Eric M. Rains A semidefinite program for distillable entanglement , 2001, IEEE Trans. Inf. Theory.

[6]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[7]  Stefano Pirandola,et al.  End-to-end capacities of a quantum communication network , 2019, Communications Physics.

[8]  Ying Li,et al.  High threshold distributed quantum computing with three-qubit nodes , 2012, 1204.0443.

[9]  Nilanjana Datta,et al.  Distilling entanglement from arbitrary resources , 2010, 1006.1896.

[10]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[11]  S. Pirandola,et al.  General Benchmarks for Quantum Repeaters , 2015, 1512.04945.

[12]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[13]  Kae Nemoto,et al.  Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light , 2006 .

[14]  Andrew G. Glen,et al.  APPL , 2001 .

[15]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[16]  Front , 2020, 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4).

[17]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information: Frontmatter , 2010 .

[18]  Pavel Sekatski,et al.  Entanglement purification by counting and locating errors with entangling measurements , 2020, Physical Review A.

[19]  M. Zwerger,et al.  Measurement-based quantum communication , 2015, 1506.00985.

[20]  H. Briegel,et al.  Measurement-based quantum computation , 2009, 0910.1116.

[21]  Liang Jiang,et al.  Optimized Entanglement Purification , 2017, Quantum.

[22]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[23]  Leif Katsuo Oxenløwe,et al.  High‐Dimensional Quantum Communication: Benefits, Progress, and Future Challenges , 2019, Advanced Quantum Technologies.

[24]  Barry C. Sanders,et al.  Qudits and High-Dimensional Quantum Computing , 2020, Frontiers in Physics.

[25]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[26]  G. Tóth,et al.  Quantum metrology from a quantum information science perspective , 2014, 1405.4878.

[27]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[28]  Zach DeVito,et al.  Opt , 2017 .