Stabilization of Super Electrophilic Pd+2 Cations in Small-Pore SSZ-13 Zeolite

<p>We provide the first observation and characterization of super-electrophilic metal cations on a solid support. For Pd/SSZ-13 the results of our combined experimental (FTIR, XPS, HAADF-STEM) and density functional theory study reveal that Pd ions in zeolites, previously identified as Pd<sup>+3</sup> and Pd<sup>+4</sup>, are in fact present as super electrophilic Pd<sup>+2</sup> species (charge-transfer complex/ion pair with the negatively charged framework oxygens). In this contribution we re-assign the spectroscopic signatures of these species, discuss the unusual coordination environment of “naked” (ligand-free) super-electrophilic Pd<sup>+2</sup> in SSZ-13, and their complexes with CO and NO. With CO, non-classical, highly positive [Pd(CO)<sub>2</sub>]<sup>2+</sup> ions are formed with the zeolite framework acting as a weakly coordinating anion (ion pairs). Non-classical carbonyl complexes also form with Pt<sup>+2</sup> and Ag<sup>+</sup> in SSZ-13. The Pd<sup>+2</sup>(CO)<sub>2</sub> complex is remarkably stable in zeolite cages even in the presence of water. Dicarbonyl and nitrosyl Pd<sup>+2</sup> complexes, in turn, serve as precursors to the synthesis of previously inaccessible Pd<sup>+2</sup>-carbonyl-olefin [Pd(CO)(C<sub>2</sub>H<sub>4</sub>)] and -nitrosyl-olefin [Pd(NO)(C<sub>2</sub>H<sub>4</sub>)] complexes. Overall, we show that zeolite framework can stabilize super electrophilic metal (Pd) cations, and show the new chemistry of Pd/SSZ-13 system with implications for adsorption and catalysis.<br></p>

[1]  L. Kovarik,et al.  Activation of Ethylene C-H Bonds on Uniform D8 Ir(I) and Ni(II) Cations in Zeolites: Catalytic Butadiene and Butenes Production Under Mild Conditions , 2019 .

[2]  L. Kovarik,et al.  Palladium/Zeolite Low Temperature Passive NOx Adsorbers (PNA): Structure-Adsorption Property Relationships for Hydrothermally Aged PNA Materials , 2019, Emission Control Science and Technology.

[3]  F. Gao,et al.  Palladium/Beta zeolite passive NOx adsorbers (PNA): Clarification of PNA chemistry and the effects of CO and zeolite crystallite size on PNA performance , 2019, Applied Catalysis A: General.

[4]  Do Heui Kim,et al.  Effect of various activation conditions on the low temperature NO adsorption performance of Pd/SSZ-13 passive NOx adsorber , 2017, Catalysis Today.

[5]  J. Hanson,et al.  Achieving Atomic Dispersion of Highly Loaded Transition Metals in Small-Pore Zeolite SSZ-13: High-Capacity and High-Efficiency Low-Temperature CO and Passive NOx Adsorbers. , 2018, Angewandte Chemie.

[6]  Oana Mihai,et al.  The Effect of Si/Al Ratio for Pd/BEA and Pd/SSZ-13 Used as Passive NOx Adsorbers , 2018, Topics in Catalysis.

[7]  L. Kovarik,et al.  Molecular Level Understanding of How Oxygen and Carbon Monoxide Improve NOx Storage in Palladium/SSZ-13 Passive NOx Adsorbers: The Role of NO+ and Pd(II)(CO)(NO) Species , 2018 .

[8]  D. Blom,et al.  Synthesis, Modeling, and Catalytic Properties of HY Zeolite-Supported Rhodium Dinitrosyl Complexes , 2017 .

[9]  M. Engelhard,et al.  Low-Temperature Pd/Zeolite Passive NOx Adsorbers: Structure, Performance, and Adsorption Chemistry , 2017 .

[10]  P. Sautet,et al.  Oxidation of Methane to Methanol over Single Site Palladium Oxide Species on Silica: A Mechanistic view from DFT. , 2017, The journal of physical chemistry. A.

[11]  S. Parker,et al.  Vibrational spectra of buta-1,3-diene iron tricarbonyl: comparison to surface species , 2017 .

[12]  A. Corma,et al.  Reversible Transformation of Pt Nanoparticles into Single Atoms inside High-Silica Chabazite Zeolite. , 2016, Journal of the American Chemical Society.

[13]  Konstantin M. Neyman,et al.  Can the state of platinum species be unambiguously determined by the stretching frequency of an adsorbed CO probe molecule? , 2016, Physical chemistry chemical physics : PCCP.

[14]  G. Stucky,et al.  Supplementary Material for Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts , 2015 .

[15]  G. Vayssilov,et al.  Effect of Si/Al Ratio and Rh Precursor Used on the Synthesis of HY Zeolite-Supported Rhodium Carbonyl Hydride Complexes , 2015 .

[16]  I. Hermans,et al.  Can Dynamics Be Responsible for the Complex Multipeak Infrared Spectra of NO Adsorbed to Copper(II) Sites in Zeolites? , 2015, Angewandte Chemie.

[17]  Konstantin M. Neyman,et al.  The structure and stability of reduced and oxidized mononuclear platinum species on nanostructured ceria from density functional modeling. , 2015, Physical chemistry chemical physics : PCCP.

[18]  K. Khivantsev Selective Synthesis and Characterization of Single-Site Hy Zeolite-supported Rhodium Complexes and their use as Catalysts for Ethylene Hydrogenation and Dimerization , 2015 .

[19]  Sinopec Tianjin In Situ IR Spectroscopic Study on the Hydrogenation of 1,3-Butadiene on Fresh Mo_2C/γ-Al_2O_3 Catalyst , 2014 .

[20]  A. Lipton,et al.  A common intermediate for N2 formation in enzymes and zeolites: side-on Cu-nitrosyl complexes. , 2013, Angewandte Chemie.

[21]  Weixin Huang,et al.  Identification of active sites for CO and CH4 oxidation over PdO/Ce1−xPdxO2−δ catalysts , 2012 .

[22]  L. Bonneviot,et al.  Theoretical and experimental investigations on site occupancy for palladium oxidation states in mesoporous Al-MCM-41 materials , 2012 .

[23]  C. Peden,et al.  Two different cationic positions in Cu-SSZ-13? , 2012, Chemical communications.

[24]  M. Mihaylov,et al.  Characterisation of Porous Materials by FTIR Spectroscopy of Isotopically Labelled Probe Molecules , 2012 .

[25]  Russell G. Tonkyn,et al.  Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3 , 2010 .

[26]  N. Takagi,et al.  Platinum sintering on H-ZSM-5 followed by chemometrics of CO adsorption and 2D pressure-jump IR spectroscopy of adsorbed species. , 2010, Angewandte Chemie.

[27]  J. Valyon,et al.  Activation of Hydrogen and Hexane over Pt,H-Mordenite Hydroisomerization Catalysts , 2009 .

[28]  A. Corma,et al.  Crossing the Borders Between Homogeneous and Heterogeneous Catalysis: Developing Recoverable and Reusable Catalytic Systems , 2008 .

[29]  K. Chakarova,et al.  Effect of preparation technique on the properties of platinum in NaY zeolite: A study by FTIR spectroscopy of adsorbed CO , 2007 .

[30]  J. Silvestre-Albero,et al.  Combined UHV and ambient pressure studies of 1,3-butadiene adsorption and reaction on Pd(1 1 1) by GC, IRAS and XPS , 2007 .

[31]  R. Schlögl,et al.  Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part II: Oxidation states and surface species on Pd/CeO2 under reaction conditions, suggested reaction mechanism , 2006 .

[32]  M. Mihaylov,et al.  FTIR spectroscopic study of CO adsorption on Pt–H–ZSM-5 , 2005 .

[33]  K. Chakarova,et al.  Co-ordination chemistry of palladium cations in Pd-H-ZSM-5 as revealed by FTIR spectra of adsorbed and co-adsorbed probe molecules (CO and NO) , 2004 .

[34]  G. Olah,et al.  Superelectrophilic solvation. , 2004, Accounts of chemical research.

[35]  G. Rauhut,et al.  Ethyne adsorbed on CuNaY zeolite: FTIR spectra and quantum chemical calculations , 2003 .

[36]  M. Schmal,et al.  Surface Sites of Pd/CeO 2 /Al 2 O 3 Catalysts in the Partial Oxidation of Propane , 2003 .

[37]  Masatake Haruta,et al.  When gold is not noble: catalysis by nanoparticles. , 2003, Chemical record.

[38]  G. Vayssilov,et al.  Characterization of Oxide Surfaces and Zeolites by Carbon Monoxide as an IR Probe Molecule , 2003 .

[39]  N. Rösch,et al.  A new interpretation of the IR bands of supported Rh(I) monocarbonyl complexes. , 2002, Journal of the American Chemical Society.

[40]  J. Choy,et al.  X-Ray absorption spectroscopic study on LaPdO3 , 2002 .

[41]  U. Westphal,et al.  Superelectrophilic tetrakis(carbonyl)palladium(II)- and -platinum(II) undecafluorodiantimonate(V), [Pd(CO)4][Sb(2)F(11)]2 and [Pt(CO)4][Sb(2)F(11)]2: syntheses, physical and spectroscopic properties, their crystal, molecular, and extended structures, and density functional calculations: an experimen , 2001, Journal of the American Chemical Society.

[42]  Q. Xin,et al.  An IR Study on Selective Hydrogenation of 1,3-Butadiene on Transition Metal Nitrides: 1,3-Butadiene and 1-Butene Adsorption on Mo2N/γ-Al2O3 Catalyst , 2000 .

[43]  H. Willner,et al.  Bis(carbonyl)platinum(II) Derivatives: Molecular Structure of cis-Pt(CO)2(SO3F)2, Complete Vibrational Analysis of cis-Pt(CO)2Cl2, and Attempted Synthesis of cis-Pt(CO)2F2 , 2000 .

[44]  N. Rösch,et al.  Structure and Bonding of a Site-Isolated Transition Metal Complex: Rhodium Dicarbonyl in Highly Dealuminated Zeolite Y , 2000 .

[45]  Seok-Hee Lee,et al.  Crystal Structure of Partially Pd2+-Exchanged Zeolite X Dehydrated in Oxygen at 400 °C. Formation of Linear Pd2O3 Clusters Proposed To Be HO−PdIV−O−PdIV−OH in (Pd2+)14(HOPdOPdOH4+)8(Na+)32−Si100Al92O384 , 2000 .

[46]  F. Fajula,et al.  An in situ diffuse reflectance FTIR study of the cyclodimerization of 1,3-butadiene over Cu-exchanged zeolites , 1998 .

[47]  János G. Ángyán,et al.  Brønsted Acid Sites in HSAPO-34 and Chabazite: An Ab Initio Structural Study , 1998 .

[48]  H. Lamb,et al.  Nucleation and growth of Pd clusters in mordenite , 1998 .

[49]  A. Bell,et al.  Investigations of the Dispersion of Pd in H-ZSM-5 , 1997 .

[50]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[51]  P. White,et al.  Mechanistic Studies of the Palladium(II)-Catalyzed Copolymerization of Ethylene with Carbon Monoxide , 1996 .

[52]  Georg Kresse,et al.  Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements , 1994 .

[53]  H. Willner,et al.  Formation of cis-Bis(carbonyl)palladium(II) Fluorosulfate, cis-Pd(CO)2(SO3F)2, and Its Crystal and Molecular Structure , 1994 .

[54]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[55]  S. Strauss,et al.  Infrared and manometric evidence for the formation of the [Ag(CO)3]+ complex ion at high PCO , 1994 .

[56]  H. Willner,et al.  The syntheses and vibrational spectra of tetrakis(carbonyl) palladium(II) and platinum(II) undecafluorodiantimonate(V), [Pd(CO)4][Sb2F11]2, and [Pt(CO)4][Sb2F11]2 , 1993 .

[57]  S. Strauss,et al.  Bis(carbonyl)silver tetrakis(pentafluorooxotellurato)borate: the first structurally characterized M(CO)2 complex , 1993 .

[58]  W. Sachtler Zeolite-supported transition metal catalysts by design , 1992 .

[59]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[60]  S. Strauss,et al.  Ag(CO)B(OTeF5)4: The First Isolable Silver Carbonyl. , 1991 .

[61]  S. Strauss,et al.  Ag(CO)B(OTeF5)4 : the first isolable silver carbonyl , 1991 .

[62]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[63]  K. Klier Transition-metal ions in zeolites: the perfect surface sites , 1988 .

[64]  R. M. Barrer Zeolite Synthesis: An Overview , 1988 .

[65]  Bruce C. Gates,et al.  Surface organometallic chemistry : molecular approaches to surface catalysis , 1988 .

[66]  I. Hisatsune Infrared spectra of 1,3-butadiene matrices containing some atomic metals , 1984 .

[67]  N. Winograd,et al.  X-ray photoelectron spectroscopic studies of palladium oxides and the palladium-oxygen electrode , 1974 .

[68]  N. Sheppard,et al.  The nature of “A,B,C”-type infrared spectra of strongly hydrogen-bonded systems; pseudo-maxima in vibrational spectra , 1969 .

[69]  K. Nakamoto,et al.  Infrared Spectra and Normal Coordinate Analysis of Metal-Olefin Complexes. I. Zeise's Salt Potassium Trichloro(ethylene)platinate(II) Monohydrate1 , 1966 .