Nonreversible Jump Algorithms for Bayesian Nested Model Selection

Abstract Nonreversible Markov chain Monte Carlo methods often outperform their reversible counterparts in terms of asymptotic variance of ergodic averages and mixing properties. Lifting the state-space is a generic technique for constructing such samplers. The idea is to think of the random variables we want to generate as position variables and to associate to them direction variables so as to design Markov chains which do not have the diffusive behavior often exhibited by reversible schemes. In this article, we explore the benefits of using such ideas in the context of Bayesian model choice for nested models, a class of models for which the model indicator variable is an ordinal random variable. By lifting this model indicator variable, we obtain nonreversible jump algorithms, a nonreversible version of the popular reversible jump algorithms. This simple algorithmic modification provides samplers which can empirically outperform their reversible counterparts at no extra computational cost. The code to reproduce all experiments is available online 1 .

[1]  H. Scheffé A Useful Convergence Theorem for Probability Distributions , 1947 .

[2]  A. Karr Weak convergence of a sequence of Markov chains , 1975 .

[3]  A. Raftery,et al.  Bayesian analysis of a Poisson process with a change-point , 1986 .

[4]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[5]  P. Green,et al.  Corrigendum: On Bayesian analysis of mixtures with an unknown number of components , 1997 .

[6]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[7]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[8]  J. Rosenthal,et al.  Optimal scaling of discrete approximations to Langevin diffusions , 1998 .

[9]  Fang Chen,et al.  Lifting Markov chains to speed up mixing , 1999, STOC '99.

[10]  P. Green,et al.  Trans-dimensional Markov chain Monte Carlo , 2000 .

[11]  Martin Hildebrand Rates of Convergence of the Diaconis-Holmes-Neal Markov Chain Sampler , 2000 .

[12]  Radford M. Neal,et al.  ANALYSIS OF A NONREVERSIBLE MARKOV CHAIN SAMPLER , 2000 .

[13]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[14]  G. Roberts,et al.  Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions , 2003 .

[15]  J. Rosenthal,et al.  General state space Markov chains and MCMC algorithms , 2004, math/0404033.

[16]  A. Doucet,et al.  Reversible Jump Markov Chain Monte Carlo Strategies for Bayesian Model Selection in Autoregressive Processes , 2004, Journal of Time Series Analysis.

[17]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[18]  Stephen P. Boyd,et al.  Fastest Mixing Markov Chain on a Path , 2006, Am. Math. Mon..

[19]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[20]  Jeffrey S. Rosenthal,et al.  Optimal Proposal Distributions and Adaptive MCMC , 2011 .

[21]  Christophe Andrieu,et al.  Annealed Importance Sampling Reversible Jump MCMC Algorithms , 2013 .

[22]  G. Roberts,et al.  A piecewise deterministic scaling limit of Lifted Metropolis-Hastings in the Curie-Weiss model , 2015, 1509.00302.

[23]  A. Doucet,et al.  The Bouncy Particle Sampler: A Nonreversible Rejection-Free Markov Chain Monte Carlo Method , 2015, 1510.02451.

[24]  K. Hukushima,et al.  Irreversible Simulated Tempering , 2016, 1601.04286.

[25]  Daniel Neuhoff,et al.  Reversible Jump Markov Chain Monte Carlo , 2016 .

[26]  A. Doucet,et al.  Piecewise-Deterministic Markov Chain Monte Carlo , 2017, 1707.05296.

[27]  Christophe Andrieu,et al.  On the utility of Metropolis-Hastings with asymmetric acceptance ratio , 2018, 1803.09527.

[28]  Giacomo Zanella,et al.  Informed Proposals for Local MCMC in Discrete Spaces , 2017, Journal of the American Statistical Association.

[29]  P. Fearnhead,et al.  The Zig-Zag process and super-efficient sampling for Bayesian analysis of big data , 2016, The Annals of Statistics.

[30]  Philippe Gagnon A step further towards automatic and efficient reversible jump algorithms , 2019 .

[31]  Johan Segers,et al.  Bayesian Model Averaging Over Tree-based Dependence Structures for Multivariate Extremes , 2017, Journal of Computational and Graphical Statistics.

[32]  Alain Desgagné,et al.  Weak convergence and optimal tuning of the reversible jump algorithm , 2016, Math. Comput. Simul..

[33]  C. Andrieu,et al.  Peskun-Tierney ordering for Markov chain and process Monte Carlo: beyond the reversible scenario , 2019, 1906.06197.

[34]  Philippe Gagnon,et al.  An automatic robust Bayesian approach to principal component regression , 2017, Journal of applied statistics.

[35]  A. Doucet,et al.  Non‐reversible parallel tempering: A scalable highly parallel MCMC scheme , 2019, Journal of the Royal Statistical Society: Series B (Statistical Methodology).