Area laws in quantum systems: mutual information and correlations.

The holographic principle states that on a fundamental level the information content of a region should depend on its surface area rather than on its volume. In this Letter we show that this phenomenon not only emerges in the search for new Planck-scale laws but also in lattice models of classical and quantum physics: the information contained in part of a system in thermal equilibrium obeys an area law. While the maximal information per unit area depends classically only on the number of degrees of freedom, it may diverge as the inverse temperature in quantum systems. It is shown that an area law is generally implied by a finite correlation length when measured in terms of the mutual information.

[1]  M. B. Hastings Entropy and entanglement in quantum ground states , 2007 .

[2]  Michael M Wolf Violation of the entropic area law for fermions. , 2006, Physical review letters.

[3]  D. Petz,et al.  Quantum Entropy and Its Use , 1993 .

[4]  H. Blöte,et al.  Quantum Spin Chains , 1981 .

[5]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[6]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[7]  G. Vidal,et al.  Entanglement in quantum critical phenomena. , 2002, Physical review letters.

[8]  Lee,et al.  Quantum source of entropy for black holes. , 1986, Physical review. D, Particles and fields.

[9]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[10]  A. Osterloh,et al.  Scaling of entanglement close to a quantum phase transition , 2002, Nature.

[11]  Benni Reznik,et al.  Spatial structures and localization of vacuum entanglement in the linear harmonic chain , 2004 .

[12]  G. Hooft On the Quantum Structure of a Black Hole , 1985 .

[13]  F. Verstraete,et al.  Matrix product density operators: simulation of finite-temperature and dissipative systems. , 2004, Physical review letters.

[14]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[15]  F. Verstraete,et al.  Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions , 2004, cond-mat/0407066.

[16]  On geometric entropy , 1994, hep-th/9401072.

[17]  J Eisert,et al.  Entropy, entanglement, and area: analytical results for harmonic lattice systems. , 2005, Physical review letters.

[18]  J. Eisert,et al.  Entanglement-area law for general bosonic harmonic lattice systems (14 pages) , 2005, quant-ph/0505092.

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  M. Fannes,et al.  Finitely correlated states on quantum spin chains , 1992 .

[21]  Vladimir E. Korepin,et al.  Quantum Spin Chain, Toeplitz Determinants and the Fisher—Hartwig Conjecture , 2004 .

[22]  J I Cirac,et al.  Entanglement versus correlations in spin systems. , 2004, Physical review letters.

[23]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[24]  A. Winter,et al.  Quantum, classical, and total amount of correlations in a quantum state , 2004, quant-ph/0410091.

[25]  M. Srednicki,et al.  Entropy and area. , 1993, Physical review letters.

[26]  A. Winter,et al.  Randomizing Quantum States: Constructions and Applications , 2003, quant-ph/0307104.

[27]  Dimitri Gioev,et al.  Entanglement entropy of fermions in any dimension and the Widom conjecture. , 2006, Physical review letters.

[28]  F. Verstraete,et al.  Criticality, the area law, and the computational power of projected entangled pair states. , 2006, Physical review letters.

[29]  A. Winter,et al.  Communications in Mathematical Physics Structure of States Which Satisfy Strong Subadditivity of Quantum Entropy with Equality , 2022 .

[30]  H. Casini,et al.  Entanglement and alpha entropies for a massive Dirac field in two dimensions , 2005, cond-mat/0505563.

[31]  J. Cardy,et al.  Entanglement entropy and quantum field theory , 2004, hep-th/0405152.

[32]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[33]  K. Audenaert A sharp continuity estimate for the von Neumann entropy , 2006, quant-ph/0610146.

[34]  P. Morse Annals of Physics , 1957, Nature.

[35]  M. Nielsen,et al.  Entanglement in a simple quantum phase transition , 2002, quant-ph/0202162.

[36]  M. B. Hastings,et al.  Solving gapped Hamiltonians locally , 2006 .

[37]  G. Vidal Entanglement renormalization. , 2005, Physical review letters.