Different approaches to the second-order Klein–Gordon equation

We derive the Klein–Gordon equation for a single scalar field coupled to gravity at second order in perturbation theory and leading order in slow-roll. This is done in two ways: we derive the Klein–Gordon equation first using the Einstein field equation and then directly from the action after integrating out the constraint equations. We also point out an unexpected result regarding the treatment of the field equations.

[1]  Hiranya V. Peiris,et al.  Comparing infrared Dirac-Born-Infeld brane inflation to observations , 2007, 0710.1812.

[2]  C. Clarkson,et al.  Vector modes generated by primordial density fluctuations , 2007, 0709.1619.

[3]  H. Peiris,et al.  Phenomenology of D-brane inflation with general speed of sound , 2007, 0706.1240.

[4]  R. Tavakol,et al.  Nonlinear vector perturbations in a contracting universe , 2007, gr-qc/0702064.

[5]  D. Wands,et al.  Cosmological gravitational wave background from primordial density perturbations , 2006, gr-qc/0612013.

[6]  L. McAllister,et al.  A Microscopic Limit on Gravitational Waves from D-brane Inflation , 2006, hep-th/0610285.

[7]  J. Valiviita,et al.  Non-Gaussianity of the primordial perturbation in the curvaton model , 2006, astro-ph/0607627.

[8]  E. Shellard,et al.  Nonlinear perturbations in multiple-field inflation , 2005, astro-ph/0504508.

[9]  D. Lyth,et al.  Non-Gaussianity from the second-order cosmological perturbation , 2005, astro-ph/0502578.

[10]  K. Tomita Relativistic second-order perturbations of nonzero-{lambda} flat cosmological models and CMB anisotropies , 2005, astro-ph/0501663.

[11]  P. Watts,et al.  Pre-Big Bang scenario on self-T-dual bouncing branes , 2004, hep-th/0411185.

[12]  Karim A. Malik,et al.  A general proof of the conservation of the curvature perturbation , 2004, astro-ph/0411220.

[13]  S. Hannestad,et al.  Searching for a holographic connection between dark energy and the low l CMB multipoles , 2004, astro-ph/0409275.

[14]  E. Shellard,et al.  Non-linear inflationary perturbations , 2004, astro-ph/0405185.

[15]  S. Matarrese,et al.  Gauge-invariant temperature anisotropies and primordial non-Gaussianity. , 2004, Physical review letters.

[16]  E. Komatsu,et al.  Non-Gaussianity from inflation: theory and observations , 2004, Physics Reports.

[17]  S. Matarrese,et al.  Non-Gaussianity in the curvaton scenario , 2003, hep-ph/0309033.

[18]  M. Zaldarriaga Non-Gaussianities in models with a varying inflaton decay rate , 2003, astro-ph/0306006.

[19]  J. Hwang,et al.  Second-order perturbations of the Friedmann world model , 2003, astro-ph/0305123.

[20]  J. Maldacena Non-Gaussian features of primordial fluctuations in single field inflationary models , 2002, astro-ph/0210603.

[21]  Carlo Ungarelli,et al.  The primordial density perturbation in the curvaton scenario , 2022 .

[22]  Andrew R. Liddle,et al.  Cosmological Inflation and Large-Scale Structure , 2000 .

[23]  H. Reall,et al.  Dynamic dilatonic domain walls , 1999, hep-th/9903225.

[24]  R. Brandenberger,et al.  BACKREACTION PROBLEM FOR COSMOLOGICAL PERTURBATIONS , 1997 .

[25]  S. Matarrese,et al.  Perturbations of spacetime: gauge transformations and gauge invariance at second order and beyond , 1996, gr-qc/9609040.

[26]  Hume A. Feldman,et al.  Theory of cosmological perturbations , 1992 .

[27]  M. Sasaki Large Scale Quantum Fluctuations in the Inflationary Universe , 1986 .

[28]  H. Kodama,et al.  Cosmological Perturbation Theory , 1984 .

[29]  J. Bardeen,et al.  Gauge Invariant Cosmological Perturbations , 1980 .

[30]  S. Hawking,et al.  Action Integrals and Partition Functions in Quantum Gravity , 1977 .

[31]  J. W. York ROLE OF CONFORMAL THREE-GEOMETRY IN THE DYNAMICS OF GRAVITATION. , 1972 .