Different approaches to the second-order Klein–Gordon equation
暂无分享,去创建一个
[1] Hiranya V. Peiris,et al. Comparing infrared Dirac-Born-Infeld brane inflation to observations , 2007, 0710.1812.
[2] C. Clarkson,et al. Vector modes generated by primordial density fluctuations , 2007, 0709.1619.
[3] H. Peiris,et al. Phenomenology of D-brane inflation with general speed of sound , 2007, 0706.1240.
[4] R. Tavakol,et al. Nonlinear vector perturbations in a contracting universe , 2007, gr-qc/0702064.
[5] D. Wands,et al. Cosmological gravitational wave background from primordial density perturbations , 2006, gr-qc/0612013.
[6] L. McAllister,et al. A Microscopic Limit on Gravitational Waves from D-brane Inflation , 2006, hep-th/0610285.
[7] J. Valiviita,et al. Non-Gaussianity of the primordial perturbation in the curvaton model , 2006, astro-ph/0607627.
[8] E. Shellard,et al. Nonlinear perturbations in multiple-field inflation , 2005, astro-ph/0504508.
[9] D. Lyth,et al. Non-Gaussianity from the second-order cosmological perturbation , 2005, astro-ph/0502578.
[10] K. Tomita. Relativistic second-order perturbations of nonzero-{lambda} flat cosmological models and CMB anisotropies , 2005, astro-ph/0501663.
[11] P. Watts,et al. Pre-Big Bang scenario on self-T-dual bouncing branes , 2004, hep-th/0411185.
[12] Karim A. Malik,et al. A general proof of the conservation of the curvature perturbation , 2004, astro-ph/0411220.
[13] S. Hannestad,et al. Searching for a holographic connection between dark energy and the low l CMB multipoles , 2004, astro-ph/0409275.
[14] E. Shellard,et al. Non-linear inflationary perturbations , 2004, astro-ph/0405185.
[15] S. Matarrese,et al. Gauge-invariant temperature anisotropies and primordial non-Gaussianity. , 2004, Physical review letters.
[16] E. Komatsu,et al. Non-Gaussianity from inflation: theory and observations , 2004, Physics Reports.
[17] S. Matarrese,et al. Non-Gaussianity in the curvaton scenario , 2003, hep-ph/0309033.
[18] M. Zaldarriaga. Non-Gaussianities in models with a varying inflaton decay rate , 2003, astro-ph/0306006.
[19] J. Hwang,et al. Second-order perturbations of the Friedmann world model , 2003, astro-ph/0305123.
[20] J. Maldacena. Non-Gaussian features of primordial fluctuations in single field inflationary models , 2002, astro-ph/0210603.
[21] Carlo Ungarelli,et al. The primordial density perturbation in the curvaton scenario , 2022 .
[22] Andrew R. Liddle,et al. Cosmological Inflation and Large-Scale Structure , 2000 .
[23] H. Reall,et al. Dynamic dilatonic domain walls , 1999, hep-th/9903225.
[24] R. Brandenberger,et al. BACKREACTION PROBLEM FOR COSMOLOGICAL PERTURBATIONS , 1997 .
[25] S. Matarrese,et al. Perturbations of spacetime: gauge transformations and gauge invariance at second order and beyond , 1996, gr-qc/9609040.
[26] Hume A. Feldman,et al. Theory of cosmological perturbations , 1992 .
[27] M. Sasaki. Large Scale Quantum Fluctuations in the Inflationary Universe , 1986 .
[28] H. Kodama,et al. Cosmological Perturbation Theory , 1984 .
[29] J. Bardeen,et al. Gauge Invariant Cosmological Perturbations , 1980 .
[30] S. Hawking,et al. Action Integrals and Partition Functions in Quantum Gravity , 1977 .
[31] J. W. York. ROLE OF CONFORMAL THREE-GEOMETRY IN THE DYNAMICS OF GRAVITATION. , 1972 .