Verschlüsselte Regelung in der Cloud - Stand der Technik und offene Probleme

[1]  Iman Shames,et al.  Secure and private control using semi-homomorphic encryption , 2017 .

[2]  MORITZ DIEHL,et al.  A Real-Time Iteration Scheme for Nonlinear Optimization in Optimal Feedback Control , 2005, SIAM J. Control. Optim..

[3]  Fabien Laguillaumie,et al.  Linearly Homomorphic Encryption from $$\mathsf {DDH}$$ , 2015, CT-RSA.

[4]  M. Cannon,et al.  How scaling of the disturbance set affects robust positively invariant sets for linear systems , 2016, 1606.01005.

[5]  Daniel E. Quevedo,et al.  Encrypted Cooperative Control Based on Structured Feedback , 2019, IEEE Control Systems Letters.

[6]  Thomas M. Chen,et al.  Lessons from Stuxnet , 2011, Computer.

[7]  Bernard Chazelle,et al.  Faster dimension reduction , 2010, Commun. ACM.

[8]  E. Gilbert,et al.  Theory and computation of disturbance invariant sets for discrete-time linear systems , 1998 .

[9]  Farhad Farokhi,et al.  Towards Encrypted MPC for Linear Constrained Systems , 2018, IEEE Control Systems Letters.

[10]  B. N. Pshenichnyi,et al.  Minimal invariant sets of dynamic systems with bounded disturbances , 1996 .

[11]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[12]  Pascal Paillier,et al.  Public-Key Cryptosystems Based on Composite Degree Residuosity Classes , 1999, EUROCRYPT.

[13]  Yurii Nesterov,et al.  Gradient methods for minimizing composite functions , 2012, Mathematical Programming.

[14]  David Q. Mayne,et al.  Robust model predictive control of constrained linear systems with bounded disturbances , 2005, Autom..

[15]  T. Elgamal A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, CRYPTO 1984.

[16]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..