Molecular resolution and fragmentation of fulvic acid by electrospray ionization/multistage tandem mass spectrometry.

Molecular weight distributions of fulvic acid from the Suwannee River, Georgia, were investigated by electrospray ionization/quadrupole mass spectrometry (ESI/ QMS), and fragmentation pathways of specific fulvic acid masses were investigated by electrospray ionization/ion trap multistage tandem mass spectrometry (ESI/MST/ MS). ESI/QMS studies of the free acid form of low molecular weight poly(carboxylic acid) standards in 75% methanol/25% water mobile phase found that negative ion detection gave the optimum generation of parent ions that can be used for molecular weight determinations. However, experiments with poly(acrylic acid) mixtures and specific high molecular weight standards found multiply charged negative ions that gave a low bias to molecular mass distributions. The number of negative charges on a molecule is dependent on the distance between charges. ESI/MST/MS of model compounds found characteristic water loss from alcohol dehydration and anhydride formation, as well as CO2 loss from decarboxylation, and CO loss from ester structures. Application of these fragmentation pathways to specific masses of fulvic acid isolated and fragmented by ESI/MST/MS is indicative of specific structures that can serve as a basis for future structural confirmation after these hypothesized structures are synthesized.