Full-band Monte Carlo device simulation of a Si/SiGe-HBT with a realistic Ge profile

In this paper we present full-band Monte Carlo simulations of an advanced Silicon/Silicon-Germanium Heterojunction Bipolar Transistor. In addition to this 2D MC simulations we performed simulations with a 1D MC model and a hydrodynamic model. For main internal distributions good consistency is found. We conclude with a microscopic investigation of the full-band Monte Carlo results.

[1]  C. Jungemann,et al.  Efficient Full-Band Monte Carlo Simulation of Silicon Devices , 1999 .

[2]  Friedrich Schäffler,et al.  High-mobility Si and Ge structures , 1997 .

[3]  Young June Park,et al.  An extended proof of the Ramo-Shockley theorem , 1991 .

[4]  David K. Ferry,et al.  Alloy scattering in ternary III-V compounds , 1978 .

[5]  J. W. Harrison,et al.  Alloy scattering in ternary III-V compounds , 1976 .

[6]  C. Jungemann,et al.  Convergence estimation for stationary ensemble Monte Carlo simulations , 1997 .

[7]  Hermann Schumacher,et al.  Enhanced SiGe heterojunction bipolar transistors with 160 GHz-f/sub max/ , 1995, Proceedings of International Electron Devices Meeting.

[8]  Karl Hess,et al.  Monte Carlo Device Simulation: Full Band and Beyond , 1991 .

[9]  Full-band Monte Carlo simulation of a 0.12 /spl mu/m-Si-PMOSFET with and without a strained SiGe-channel , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[10]  J.W. Slotboom,et al.  On the Optimisation of SiGe-Base Bipolar Transistors , 1995, ESSDERC '95: Proceedings of the 25th European Solid State Device Research Conference.

[11]  C. Jungemann,et al.  Efficient methods for Hall factor and transport coefficient evaluation for electrons and holes in Si and SiGe based on a full-band structure , 1998, 1998 Sixth International Workshop on Computational Electronics. Extended Abstracts (Cat. No.98EX116).

[12]  Vogl,et al.  Electronic-band parameters in strained Si1-xGex alloys on Si1-yGey substrates. , 1993, Physical review. B, Condensed matter.

[13]  S. Laux,et al.  Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. , 1988, Physical review. B, Condensed matter.

[14]  Andreas Schüppen SiGe-HBTs for mobile communication , 1999 .

[15]  D. Knoll,et al.  Low Cost, 50 GHz Fmax Si/SiGe Heterojunction Bipolar Transistor Technology with Epi-Free Collector Wells , 1998, 28th European Solid-State Device Research Conference.

[16]  F. M. Bufler,et al.  A comprehensive SiGe Monte Carlo model for transient 2D simulations of HBTs , 1997, International Electron Devices Meeting. IEDM Technical Digest.

[17]  H. Goto,et al.  Phase space multiple refresh: A general purpose statistical enhancement technique for Monte Carlo device simulation , 1996, Journal of Technology Computer Aided Design TCAD.

[18]  J. Slotboom,et al.  Unified apparent bandgap narrowing in n- and p-type silicon , 1992 .

[19]  H. C. de Graaff,et al.  Measurements of bandgap narrowing in Si bipolar transistors , 1976 .

[20]  A. Pacelli,et al.  Analysis of variance-reduction schemes for ensemble monte carlo simulation of semiconductor devices , 1997 .

[21]  Bernd Meinerzhagen,et al.  Consistent Hydrodynamic and Monte-Carlo Simulation of SiGe HBTs Based on Table Models the Relaxation Times , 1998, VLSI Design.