The chemistry and structure of calcium (alumino) silicate hydrate: A study by XANES, ptychographic imaging, and wide- and small-angle scattering

Abstract Calcium (alumino)silicate hydrate (C-(A-)S-H) is the main binding phase in blended cement concrete. Understanding the chemistry and structure of C-(A-)S-H is essential to optimizing concrete properties such as compressive strength and durability; yet questions remain around the coordination environments of Ca and Al in its structure with various chemical compositions and equilibration temperatures. C-(A-)S-H with Ca/Si = 0.6–1.6, Al/Si = 0–0.1, and equilibrated at 7–80 °C is studied by nanoscale soft X-ray spectroscopy at the Ca L2,3- and Si K-edges. Highly distorted CaO7 complexes occur in the intralayer of C-(A-)S-H irrespective of Ca/Si, Al/Si, and temperature. Zeolitic Ca in the interlayer of C-(A-)S-H is highly distorted from an ideal octahedral coordination. Third aluminate hydrate is either not Ca-bearing or its Ca is structurally similar to C-(A-)S-H and does not resemble the Ca in AFm-phases. Increasing aluminosilicate chain polymerization in C-(A-)S-H shifts the Si K-edge to higher energies, implying Al uptake in the bridging and/or cross-linked sites, as well as a contraction of Si O bond lengths. C-(A-)S-H exhibits a foil-like morphology, with individual foils comprised of nano-sized platelets with comparable thickness regardless of Ca/Si or Al/Si at 7–50 °C. Coarser C-(A-)S-H foils occur at 80 °C and higher Al/Si ratios relative to lower temperatures and Al content.

[1]  H. Zanni,et al.  Aluminum Incorporation in Calcium Silicate Hydrates (C−S−H) Depending on Their Ca/Si Ratio , 1999 .

[2]  I. Richardson The nature of the hydration products in hardened cement pastes , 2000 .

[3]  P. Monteiro,et al.  Densification of the interlayer spacing governs the nanomechanical properties of calcium-silicate-hydrate , 2017, Scientific Reports.

[4]  I. Richardson,et al.  Composition and Microstructure of 20-year-old Ordinary Portland Cement-ground Granulated Blast-furnace Slag Blends Containing 0 to 100% Slag , 2010 .

[5]  Mengxue Wu,et al.  Pozzolanic reaction of fly ash modified by fluidized bed reactor-vapor deposition , 2017 .

[6]  A. Nonat,et al.  Composition, silicate anion structure and morphology of calcium silicate hydrates (C-S-H) synthesised by silica-lime reaction and by controlled hydration of tricalcium silicate (C3S) , 2015 .

[7]  S. Merlino,et al.  The tobermorite supergroup: a new nomenclature , 2015, Mineralogical Magazine.

[8]  Stefano Merlino,et al.  The Crystal Structure of Tobermorite 14 Å (Plombierite), a C–S–H Phase , 2005 .

[9]  S. Merlino,et al.  The real structure of tobermorite 11A: normal and anomalous forms, OD character and polytypic modifications , 2001 .

[10]  R. Snellings,et al.  The pore solution of blended cements: a review , 2016 .

[11]  E. Anderson,et al.  Interferometer-controlled scanning transmission X-ray microscopes at the Advanced Light Source. , 2003, Journal of synchrotron radiation.

[12]  G. Henderson A Si K-edge EXAFS/XANES study of sodium silicate glasses , 1995 .

[13]  Paul F. McMillan,et al.  Structure of Calcium Silicate Hydrate (C‐S‐H): Near‐, Mid‐, and Far‐Infrared Spectroscopy , 2004 .

[14]  Richard R. Taylor,et al.  Soft X‐ray Spectromicroscopic Investigation of Synthetic C‐S‐H and C3S Hydration Products , 2015 .

[15]  X. Cong,et al.  Ca X-ray absorption spectroscopy of C—S—H and some model compounds , 1997 .

[16]  B. Yates,et al.  Calcium L-edge XANES study of some calcium compounds. , 2001, Journal of synchrotron radiation.

[17]  I. Richardson,et al.  Microstructure and microanalysis of hardened ordinary Portland cement pastes , 1993 .

[18]  B. Lothenbach,et al.  Influence of calcium to silica ratio on aluminium uptake in calcium silicate hydrate , 2016 .

[19]  R. J. Ktmpernlcr High-resolution silicon-29 nuclear magnetic resonance spectroscopic study of rock-forming silicates , 2007 .

[20]  D. Hou,et al.  Molecular dynamics study of solvated aniline and ethylene glycol monomers confined in calcium silicate nanochannels: a case study of tobermorite. , 2017, Physical chemistry chemical physics : PCCP.

[21]  Richard A. Secco,et al.  X-ray absorption spectroscopy of silicon dioxide (SiO2) polymorphs : the structural characterization of opal , 1994 .

[22]  D. Shapiro,et al.  Nanometer-Resolved Spectroscopic Study Reveals the Conversion Mechanism of CaO·Al2O3·10H2O to 2CaO·Al2O3·8H2O and 3CaO·Al2O3·6H2O at an Elevated Temperature , 2017 .

[23]  B. Lothenbach,et al.  Effect of temperature and aluminium on calcium (alumino)silicate hydrate chemistry under equilibrium conditions , 2015 .

[24]  D. Shapiro,et al.  Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate , 2017, Scientific Reports.

[25]  M. Fleet,et al.  Silicon K-edge XANES spectra of silicate minerals , 1995 .

[26]  J. Deventer,et al.  The Role of Al in Cross‐Linking of Alkali‐Activated Slag Cements , 2015 .

[27]  S. Merlino,et al.  The real structures of clinotobermorite and tobermorite 9 Å OD character, polytypes, and structural relationships , 2000 .

[28]  Mark Tyrer,et al.  Non-ideal solid solution aqueous solution modeling of synthetic calcium silicate hydrate , 2007 .

[29]  Xiaoyang Liu,et al.  Calcium L2,3-edge XANES of carbonates, carbonate apatite, and oldhamite (CaS) , 2009 .

[30]  J. Russias,et al.  Structural characterization of C–S–H and C–A–S–H samples—Part I: Long-range order investigated by Rietveld analyses , 2009 .

[31]  H. Jennings,et al.  The effect of drying on early-age morphology of C–S–H as observed in environmental SEM , 2010 .

[32]  F. Xing,et al.  Damping property of a cement-based material containing carbon nanotube , 2015 .

[33]  X. Feng,et al.  High-resolution Si K- and L2,3-edge XANES of α-quartz and stishovite , 1993 .

[34]  J. Yarwood,et al.  Structural Features of C–S–H(I) and Its Carbonation in Air—A Raman Spectroscopic Study. Part II: Carbonated Phases , 2007 .

[35]  R. J. Hill,et al.  Variation in d(T-O),d(T⋯T) and ∠TOT in silica and silicate minerals, phosphates and aluminates , 1979 .

[36]  G. C. Allen,et al.  Characterisation of crystalline C-S-H phases by X-ray photoelectron spectroscopy , 2003 .

[37]  A. Hitchcock,et al.  Optimization of analysis of soft X-ray spectromicroscopy at the Ca 2p edge , 2009 .

[38]  D. Schild,et al.  X-ray photoelectron spectroscopic investigation of nanocrystalline calcium silicate hydrates synthesised by reactive milling , 2006 .

[39]  S. Merlino,et al.  Tobermorites: Their real structure and order-disorder (OD) character , 1999 .

[40]  J. Pendry,et al.  Multiple-scattering resonances and structural effects in the x-ray-absorption near-edge spectra of Fe II and Fe III hexacyanide complexes , 1982 .

[41]  I. Richardson Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume , 2004 .

[42]  B. Lothenbach,et al.  Alkali uptake in calcium alumina silicate hydrate (C-A-S-H) , 2016 .

[43]  P. Monteiro,et al.  Ca L2,3-edge near edge X-ray absorption fine structure of tricalcium aluminate, gypsum, and calcium (sulfo)aluminate hydrates , 2017 .

[44]  I. Richardson Model structures for C-(A)-S-H(I) , 2014, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[45]  S. A. Hamid The crystal structure of the 11 Ä natural tobermorite Ca2.25[Si3O7.5(OH)1.5]·1H2O , 1981 .

[46]  I. Richardson,et al.  Microstructure and microanalysis of hardened cement pastes involving ground granulated blast-furnace slag , 1992 .

[47]  G. Saoût,et al.  Incorporation of aluminium in calcium-silicate-hydrates , 2015 .

[48]  M. Grutzeck A new model for the formation of calcium silicate hydrate (C-S-H) , 1999 .

[49]  D. Ghaleb,et al.  Medium range structure of borosilicate glasses from Si K-edge XANES: a combined approach based on multiple scattering and molecular dynamics calculations , 2001 .

[50]  A new Scanning Transmission X‐ray Microscope at the ALS for operation up to 2500eV , 2010 .

[51]  Manuel Guizar-Sicairos,et al.  Mass density and water content of saturated never-dried calcium silicate hydrates. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[52]  I. Richardson The nature of C-S-H in hardened cements , 1999 .

[53]  Arpad Horvath,et al.  Towards sustainable concrete. , 2017, Nature materials.

[54]  R. Maboudian,et al.  Effects of CO2 and temperature on the structure and chemistry of C–(A–)S–H investigated by Raman spectroscopy , 2017 .

[55]  H. J. Jakobsen,et al.  A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy , 2006 .

[56]  A. Atkinson,et al.  Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure , 2002 .

[57]  Ippei Maruyama,et al.  A new model for the C-S-H phase formed during the hydration of Portland cements , 2017 .

[58]  S. Merlino,et al.  The real structures of clinotobermorite and tobermorite 9 Å: OD character, polytypes, and structural relationships;The real structures of clinotobermorite and tobermorite 9 Å: OD character, polytypes, and structural relationships , 2000 .

[59]  N. Lequeux,et al.  Extended X‐ray Absorption Fine Structure Investigation of Calcium Silicate Hydrates , 2004 .

[60]  J. Russias,et al.  Structural characterization of C–S–H and C–A–S–H samples—Part II: Local environment investigated by spectroscopic analyses , 2009 .

[61]  Thole,et al.  2p x-ray absorption of 3d transition-metal compounds: An atomic multiplet description including the crystal field. , 1990, Physical review. B, Condensed matter.

[62]  D. Bersani,et al.  New data on the thermal behavior of 14 Å tobermorite , 2013 .

[63]  Grant Bunker,et al.  Introduction to XAFS: A Practical Guide to X-ray Absorption Fine Structure Spectroscopy , 2010 .

[64]  J. F. Young,et al.  The role of Al in C-S-H: NMR, XRD, and compositional results for precipitated samples , 2006 .

[65]  Tobermorite 11 Å and Its Synthetic Counterparts: Structural Relationships and Thermal Behaviour , 2008 .

[66]  A. Nonat,et al.  27Al and 29Si solid-state NMR characterization of calcium-aluminosilicate-hydrate. , 2012, Inorganic chemistry.

[67]  I. Richardson The calcium silicate hydrates , 2008 .

[68]  M. Fleet,et al.  The structure of titanium silicate glasses investigated by Si K-edge X-ray absorption spectroscopy , 1997 .

[69]  S. Bernal,et al.  Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[70]  Markus J Buehler,et al.  A realistic molecular model of cement hydrates , 2009, Proceedings of the National Academy of Sciences.

[71]  A. Nonat,et al.  Experimental study of Si–Al substitution in calcium-silicate-hydrate (C-S-H) prepared under equilibrium conditions , 2009 .

[72]  J. Beaudoin,et al.  Natural abundance high field (43)Ca solid state NMR in cement science. , 2010, Physical chemistry chemical physics : PCCP.

[73]  Qing Chen,et al.  Chemical and mineralogical alterations of concrete subjected to chemical attacks in complex underground tunnel environments during 20–36 years , 2018 .

[74]  P. Monteiro,et al.  Compositional Evolution of Calcium Silicate Hydrate (C-S-H) Structures by Total X-Ray Scattering , 2012 .

[75]  S. A. Hamid The crystal structure of the 11Å natural tobermorite Ca2.25[Si3O7.5(OH)1.5] · 1H2O , 1981 .

[76]  Howard A. Padmore,et al.  Soft X‐ray Ptychographic Imaging and Morphological Quantification of Calcium Silicate Hydrates (C–S–H) , 2015 .

[77]  Richard R. Taylor,et al.  Atomic and nano-scale characterization of a 50-year-old hydrated C3S paste , 2015 .