Fast Parallel Absolute Irreducibility Testing
暂无分享,去创建一个
[1] Nathan Jacobson. Ein algebraisches Kriterium für absolute Irreduzibilität , 1983 .
[2] Erich Kaltofen,et al. Factoring Sparse Multivariate Polynomials , 1983, J. Comput. Syst. Sci..
[3] Erich Kaltofen. A Polynomial-Time Reduction from Bivariate to Univariate Integral Polynomial Factorization , 1982, FOCS.
[4] Dominique Duval,et al. Computations on Curves , 1984, EUROSAM.
[5] Oscar H. Ibarra,et al. A Note on the Parallel Complexity of Computing the Rank of Order n Matrices , 1980, Inf. Process. Lett..
[6] John H. Reif. Logarithmic Depth Circuits for Algebraic Functions , 1986, SIAM J. Comput..
[7] S. Comput,et al. POLYNOMIAL-TIME REDUCTIONS FROM MULTIVARIATE TO BI- AND UNIVARIATE INTEGRAL POLYNOMIAL FACTORIZATION* , 1985 .
[8] J. D. Lipson. Elements of algebra and algebraic computing , 1981 .
[9] James H. Davenport,et al. Factorization over finitely generated fields , 1981, SYMSAC '81.
[10] László Lovász,et al. Factoring polynomials with rational coefficients , 1982 .
[11] R. Loos. Computing in Algebraic Extensions , 1983 .
[12] Erich Kaltofen. Effective Hilbert Irreducibility , 1985, Inf. Control..
[13] Joachim von zur Gathen,et al. Parallel algorithms for algebraic problems , 1983, SIAM J. Comput..
[14] Erich Kaltofen,et al. A polynomial-time reduction from bivariate to univariate integral polynomial factorization , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).
[15] Allan Borodin,et al. Parallel Computation for Well-Endowed Rings , 1983 .
[16] Wolfgang M. Schmidt,et al. Equations over Finite Fields: An Elementary Approach , 1976 .
[17] Erich Kaltofen,et al. Polynomial-Time Factorization of Multivariate Polynomials over Finite Fields , 1983, ICALP.
[18] Allan Borodin,et al. Fast parallel matrix and GCD computations , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).
[19] W. Schmidt. Equations over Finite Fields: An Elementary Approach , 1976 .
[20] Alexander Ostrowski,et al. Zur arithmetischen Theorie der algebraischen Grössen , 1984 .
[21] Joos Heintz,et al. Absolute Primality of Polynomials is Decidable in Random Polynomial Time in the Number of Variables , 1981, ICALP.