Process Monitoring in Grinding

Abstract The grinding process is characterised by a high number of cutting edges undergoing non-uniform wear, this also typifies a highly non-stationary process. Pure process modelling in order to understand the grinding mechanisms and to predict the work result is difficult. In view of this, several approaches by academia and by industry were made to address this issue. One such approach is the development and implementation of process monitoring in grinding. The work presented in this paper summarises the various elements and approaches in process monitoring during grinding. The paper deals with the relevant quantities that describe the grinding process itself and the ensuing work result. Furthermore the different sensing techniques are introduced to measure the relevant quantities. Finally an overview is presented as to the strategies and techniques involved in the interpretation of the measured data and the subsequent control action initiated in order to close the process control loop.

[1]  D. A. Thomas,et al.  In-process Identification of System Time Constant for the Adaptive Control of Grinding , 1995 .

[2]  Ekkard Brinksmeier,et al.  Monitoring of grinding wheel wear , 1992 .

[3]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[4]  Hans Kurt Tönshoff,et al.  Sensors in manufacturing , 2002 .

[5]  Ichiro Inasaki,et al.  Grinding Monitoring System Based on Power and Acoustic Emission Sensors , 2000 .

[6]  M. J. Usher Sensors and transducers , 1985 .

[7]  Ichiro Inasaki,et al.  Tool Condition Monitoring (TCM) — The Status of Research and Industrial Application , 1995 .

[8]  Richard L. Kegg Industrial Problems in Grinding , 1983 .

[9]  B. Karpuschewski,et al.  Zahnflankenschleifen bogenverzahnter Kegelradsätze mit CBN-Schleifscheiben , 1997 .

[10]  Christopher J. Evans,et al.  High Speed Grinding of Silicon Nitride With Electroplated Diamond Wheels, Part 1: Wear and Wheel Life , 2000 .

[11]  Alison B. Flatau,et al.  On Magnetostrictive Transducer Applications , 1999 .

[12]  I. Grabec,et al.  Characterization of Manufacturing Processes Based upon Acoustic Emission Analysis by Neural Networks , 1994 .

[13]  Janez Peklenik,et al.  Contribution to the Correlation Theory for the Grinding Process , 1964 .

[14]  Ichiro Inasaki,et al.  Intelligent Data Base for Grinding Operations , 1993 .

[15]  Ichiro Inasaki,et al.  A Neural Network Approach to the Decision-Making Process for Grinding Operations , 1992 .

[16]  Bogdan Kruszyński,et al.  Residual stress in grinding , 2001 .

[17]  W. P. Dong,et al.  Raw Acoustic Emission Signal Analysis of Grinding Process , 1996 .

[18]  Jerzy Jedrzejewski,et al.  An Intelligent Monitoring System for Cylindrical Grinding , 1993 .

[19]  Hans Kurt Tönshoff,et al.  Optimierregelung für das Innenrundschleifen , 1996 .

[20]  Wilfried Saxler Erkennung von Schleifbrand durch Schallemissionsanalyse , 1997 .

[21]  Jacques Peters Contribution of CIRP Research to Industrial Problem in Grinding , 1984 .

[22]  S. Pathare,et al.  Development of a Sensor-Integrated “Intelligent” Grinding Wheel for In-Process Monitoring , 1999 .

[23]  I. Inasaki,et al.  Grinding Chatter – Origin and Suppression , 2001 .

[24]  W. B. Rowe,et al.  Temperatures in High Efficiency Deep Grinding (HEDG) , 2001 .

[25]  Ichiro Inasaki,et al.  Grinding Process Achievements and their Consequences on Machine Tools Challenges and Opportunities , 1998 .

[26]  Christian Böhm Entwicklung und Erprobung sensorintegrierter Schleifwerkzeuge , 2001 .

[27]  Th. Gast,et al.  An Optical Instrument for Measuring the Surface Roughness in Production Control , 1984 .

[28]  Günther Werner Kinematik und Mechanik des Schleifprozesses , 1971 .

[29]  W B Rowe,et al.  Study and selection of grinding conditions Part 1: Grinding conditions and selection strategy , 1999 .

[30]  Paweł Lajmert,et al.  An intelligent cylindrical grinding machine , 2000 .

[31]  T. Ueda,et al.  Studies on Temperature of Abrasive Grains in Grinding—Application of Infrared Radiation Pyrometer , 1985 .

[32]  Ichiro Inasaki,et al.  Modelling and Simulation of Grinding Processes , 1992 .

[33]  Jacques Peters,et al.  Optimization Procedure of Three Phase Grinding Cycles of a Series without Intermediate Dressing , 1980 .

[34]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[35]  C. A. van Luttervelt,et al.  An Attempt to Predict Residual Stresses in Grinding of Metals with the Aid of a New Grinding Parameter , 1991 .

[36]  Kuno Marschall,et al.  In-process monitoring with piezoelectric sensors , 1994 .

[37]  A. Pollock Acoustic emission - 2: Acoustic emission amplitudes , 1973 .

[38]  João Fernando Gomes de Oliveira,et al.  Dimensional Characterization of Grinding Wheel Surface through Acoustic Emission , 1994 .

[39]  M. Heckl,et al.  Korperschall: Physikalische Grundlagen Und Technische Anwendungen , 1996 .

[40]  Mutsumi Touge,et al.  Monitoring of wear of abrasive grains , 1996 .

[41]  Friedrich Förster The Origin of Nondestructive Determination of Characteristic Material Parameters Using Electromagnetic Methods , 1989 .

[42]  Ichiro Inasaki,et al.  OPTIMIZATION OF TURNING PROCESS BY CUTTING FORCE MEASUREMENT , 1991 .

[43]  Spyros G. Tzafestas,et al.  Modelling and Simulation , 1990 .

[44]  Günter Kassen Beschreibung der elementaren Kinematik des Schleifvorganges , 1969 .

[45]  João Fernando Gomes de Oliveira,et al.  Development of an optical scanner to study wear on the working surface of grinding wheels , 1999 .

[46]  Li Yan,et al.  Applications of artificial intelligence in grinding , 1994 .