Continuous odor profile monitoring 1 to study olfactory navigation in 2 small animals 3

10 Olfactory navigation is observed across species and plays a crucial role in locating resources for 11 survival. In the laboratory, understanding the behavioral strategies and neural circuits underlying 12 odor-taxis requires a detailed understanding of the animal’s sensory environment. For small 13 model organisms like C. elegans and larval D. melanogaster , controlling and measuring the odor

[1]  J. Moehlis,et al.  Depolarization block in olfactory sensory neurons expands the dimensionality of odor encoding , 2022, Science advances.

[2]  Damon A. Clark,et al.  Odour motion sensing enhances navigation of complex plumes , 2022, Nature.

[3]  Wolf Huetteroth,et al.  Olfactory stimuli and moonwalker SEZ neurons can drive backward locomotion in Drosophila , 2022, Current Biology.

[4]  K. Hosoda,et al.  Multisensory-motor integration in olfactory navigation of silkmoth, Bombyx mori, using virtual reality system , 2021, eLife.

[5]  Jordi Fonollosa,et al.  Drift in a Popular Metal Oxide Sensor Dataset Reveals Limitations for Gas Classification Benchmarks , 2021, Sensors and Actuators B: Chemical.

[6]  Andrew M. M. Matheson,et al.  A neural circuit for wind-guided olfactory navigation , 2021, Nature Communications.

[7]  Henry H. Mattingly,et al.  Escherichia coli chemotaxis is information limited , 2021, Nature Physics.

[8]  Damien Drix,et al.  Resolving Fast Gas Transients with Metal Oxide Sensors. , 2021, ACS sensors.

[9]  D. Perkel,et al.  Using Head-Mounted Ethanol Sensors to Monitor Olfactory Information and Determine Behavioral Changes Associated with Ethanol-Plume Contact during Mouse Odor-Guided Navigation , 2021, eNeuro.

[10]  Eduardo J. Izquierdo,et al.  Contributions from parallel strategies for spatial orientation in C. elegans , 2020, ALIFE.

[11]  Eyal Rozenfeld,et al.  Differential Role for a Defined Lateral Horn Neuron Subset in Naïve Odor Valence in Drosophila , 2020, Scientific Reports.

[12]  Nirag Kadakia,et al.  Walking Drosophila navigate complex plumes using stochastic decisions biased by the timing of odor encounters , 2020, bioRxiv.

[13]  Achim J. Lilienthal,et al.  Gas distribution mapping and source localization using a 3D grid of metal oxide semiconductor sensors , 2020, Sensors and Actuators B: Chemical.

[14]  Cornelia I. Bargmann,et al.  An Adaptive-Threshold Mechanism for Odor Sensation and Animal Navigation , 2019, Neuron.

[15]  Nathaniel N. Urban,et al.  Mouse Navigation Strategies for Odor Source Localization , 2019, bioRxiv.

[16]  A. Cardona,et al.  Neural Substrates of Drosophila Larval Anemotaxis , 2019, Current Biology.

[17]  H. Berg Random Walks in Biology , 2018 .

[18]  Michael Dickinson,et al.  Algorithms for Olfactory Search across Species , 2018, The Journal of Neuroscience.

[19]  E. Glater,et al.  Identification of attractive odorants released by preferred bacterial food found in the natural habitats of C. elegans , 2018, PloS one.

[20]  Rotem Ruach,et al.  Concerted pulsatile and graded neural dynamics enables efficient chemotaxis in C. elegans , 2018, Nature Communications.

[21]  Bard Ermentrout,et al.  Information-theoretic analysis of realistic odor plumes: What cues are useful for determining location? , 2018, PLoS Comput. Biol..

[22]  Joshua W Shaevitz,et al.  Temporal processing and context dependency in Caenorhabditis elegans response to mechanosensation , 2018, eLife.

[23]  Yuishi Iwasaki,et al.  Measuring Spatiotemporal Dynamics of Odor Gradient for Small Animals by Gas Chromatography. , 2018, Bio-protocol.

[24]  Brad A. Radvansky,et al.  An olfactory virtual reality system for mice , 2018, Nature Communications.

[25]  Aravinthan D. T. Samuel,et al.  Exploratory search during directed navigation in C. elegans and Drosophila larva , 2017, eLife.

[26]  Adam J. Calhoun,et al.  Quantifying behavior to solve sensorimotor transformations: advances from worms and flies , 2017, Current Opinion in Neurobiology.

[27]  Koichi Hashimoto,et al.  Calcium dynamics regulating the timing of decision-making in C. elegans , 2017, eLife.

[28]  Cori Bargmann,et al.  Parallel encoding of sensory history and behavioral preference during Caenorhabditis elegans olfactory learning , 2016, eLife.

[29]  Michael Schmuker,et al.  Exploiting plume structure to decode gas source distance using metal-oxide gas sensors , 2016, 1602.01815.

[30]  Vikas Bhandawat,et al.  Odor-identity dependent motor programs underlie behavioral responses to odors , 2015, eLife.

[31]  Koutarou D. Kimura,et al.  Modulation of different behavioral components by neuropeptide and dopamine signalings in non-associative odor learning of Caenorhabditis elegans , 2015, Neuroscience Research.

[32]  Steven W. Flavell,et al.  A Circuit for Gradient Climbing in C. elegans Chemotaxis. , 2015, Cell reports.

[33]  Natalie M Bernat,et al.  Computations underlying Drosophila photo-taxis, odor-taxis, and multi-sensory integration , 2015, eLife.

[34]  Randall D. Beer,et al.  Information Flow through a Model of the C. elegans Klinotaxis Circuit , 2015, PloS one.

[35]  Sreekanth H. Chalasani,et al.  Maximally informative foraging by Caenorhabditis elegans , 2014, eLife.

[36]  M. Vergassola,et al.  Odor Landscapes in Turbulent Environments , 2014, 1411.3507.

[37]  Aravinthan D. T. Samuel,et al.  Dynamic Encoding of Perception, Memory, and Movement in a C. elegans Chemotaxis Circuit , 2014, Neuron.

[38]  Yi Deng,et al.  Dynamic sensory cues shape song structure in Drosophila , 2014, Nature.

[39]  Y. Iino,et al.  Concentration memory-dependent synaptic plasticity of a taste circuit regulates salt concentration chemotaxis in Caenorhabditis elegans , 2013, Nature Communications.

[40]  Damon A. Clark,et al.  Mapping and Cracking Sensorimotor Circuits in Genetic Model Organisms , 2013, Neuron.

[41]  Dimitar Valkov,et al.  FIM, a Novel FTIR-Based Imaging Method for High Throughput Locomotion Analysis , 2013, PloS one.

[42]  Aravinthan D. T. Samuel,et al.  Controlling airborne cues to study small animal navigation , 2012, Nature Methods.

[43]  Kazushi Yoshida,et al.  Odour concentration-dependent olfactory preference change in C. elegans , 2012, Nature Communications.

[44]  A. Gomez-Marin,et al.  Active sampling and decision making in Drosophila chemotaxis , 2011, Nature communications.

[45]  Cori Bargmann,et al.  High-content behavioral analysis of Caenorhabditis elegans in precise spatiotemporal chemical environments , 2011, Nature Methods.

[46]  C. Murphy,et al.  C. elegans Positive Butanone Learning, Short-term, and Long-term Associative Memory Assays , 2011, Journal of visualized experiments : JoVE.

[47]  Kazushi Yoshida,et al.  Parallel Use of Two Behavioral Mechanisms for Chemotaxis in Caenorhabditis elegans , 2009, The Journal of Neuroscience.

[48]  S. M. Coulthard,et al.  Artificial dirt: microfluidic substrates for nematode neurobiology and behavior. , 2008, Journal of Neurophysiology.

[49]  L. Vosshall,et al.  Bilateral olfactory sensory input enhances chemotaxis behavior , 2008, Nature Neuroscience.

[50]  Cori Bargmann,et al.  Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans , 2007, Nature Methods.

[51]  Massimo Vergassola,et al.  ‘Infotaxis’ as a strategy for searching without gradients , 2007, Nature.

[52]  Takeshi Ishihara,et al.  Caenorhabditis elegans Integrates the Signals of Butanone and Food to Enhance Chemotaxis to Butanone , 2007, The Journal of Neuroscience.

[53]  Thomas C. Evans,et al.  Transformation and microinjection , 2006 .

[54]  A. Dubin,et al.  Inactivation of olfactory sensilla of a single morphological type differentially affects the response of Drosophila to odors. , 2002, Journal of neurobiology.

[55]  Thomas M. Morse,et al.  The Fundamental Role of Pirouettes in Caenorhabditis elegans Chemotaxis , 1999, The Journal of Neuroscience.

[56]  A. Dubin,et al.  Involvement of Genes Encoding a K+ Channel (ether a go‐go) and a Na+ Channel (smellblind) in Drosophila Olfaction a , 1998, Annals of the New York Academy of Sciences.

[57]  A. Dubin,et al.  Scutoid mutation of Drosophila melanogaster specifically decreases olfactory responses to short-chain acetate esters and ketones. , 1995, Journal of neurobiology.

[58]  T. Baker,et al.  Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Cori Bargmann,et al.  Odorant-selective genes and neurons mediate olfaction in C. elegans , 1993, Cell.

[60]  Cori Bargmann,et al.  Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans , 1991, Neuron.

[61]  H. Berg,et al.  Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking , 1972, Nature.

[62]  Jack A. Taylor,et al.  Supplementary file 2. , 2014 .