Co-expression of the Thermotoga neapolitana aglB gene with an upstream 3'-coding fragment of the malG gene improves enzymatic characteristics of recombinant AglB cyclomaltodextrinase.

[1]  Shih-Hsiung Wu,et al.  Coexpression, purification and characterization of the E and S subunits of coenzyme B(12) and B(6) dependent Clostridium sticklandii D-ornithine aminomutase in Escherichia coli. , 2004, European journal of biochemistry.

[2]  V. Zverlov,et al.  Comparative Analysis of the Recombinant α-Glucosidases from the Thermotoga neapolitana and Thermotoga maritima Maltodextrin Utilization Gene Clusters , 2003 .

[3]  V. Zverlov,et al.  A Cluster of Thermotoga neapolitana Genes Involved in the Degradation of Starch and Maltodextrins: the Molecular Structure of the Locus , 2003, Molecular Biology.

[4]  V. Zverlov,et al.  A Cluster of Thermotoga neapolitana Genes Involved in the Degradation of Starch and Maltodextrins: the Expression of the aglB and aglA Genes in E. coli and the Properties of the Recombinant Enzymes , 2003, Molecular Biology.

[5]  V. Zverlov,et al.  [Thermotoga neopolitina gene cluster, participating in degradation of starch and maltodextrins: expression of aglB and aglA gene in Escherichia coli, properties of recombinant enzymes]. , 2003, Molekuliarnaia biologiia.

[6]  V. Zverlov,et al.  [Thermotoga neapolitana gene clusters participating in degradation of starch and maltodextins: molecular structure of the locus]. , 2003, Molekuliarnaia biologiia.

[7]  T. Moon,et al.  A novel amylolytic enzyme from Thermotoga maritima, resembling cyclodextrinase and alpha-glucosidase, that liberates glucose from the reducing end of the substrates. , 2002, Biochemical and biophysical research communications.

[8]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[9]  L. Dijkhuizen,et al.  Engineering of cyclodextrin glycosyltransferase reaction and product specificity. , 2000, Biochimica et biophysica acta.

[10]  K. Kuwajima,et al.  Equilibrium and kinetic studies on folding of the authentic and recombinant forms of human α-lactalbumin by circular dichroism spectroscopy , 2000 .

[11]  J. Kim,et al.  Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the alpha-amylase family. , 2000, Biochimica et biophysica acta.

[12]  J. Kim,et al.  Molecular characterization of a dimeric intracellular maltogenic amylase of Bacillus subtilis SUH4-2. , 2000, Biochimica et biophysica acta.

[13]  V. Uversky,et al.  Structure and stability of recombinant protein depend on the extra N-terminal methionine residue: S6 permutein from direct and fusion expression systems. , 1999, Biochimica et biophysica acta.

[14]  L. T. Chen,et al.  Remarkable destabilization of recombinant alpha-lactalbumin by an extraneous N-terminal methionyl residue. , 1998, Protein engineering.

[15]  T. Ueda,et al.  Improvement of the refolding yield and solubility of hen egg-white lysozyme by altering the Met residue attached to its N-terminus to Ser. , 1997, Protein engineering.

[16]  W. Liebl,et al.  Properties and gene structure of the Thermotoga maritima alpha-amylase AmyA, a putative lipoprotein of a hyperthermophilic bacterium , 1997, Journal of bacteriology.

[17]  S. Krzywda,et al.  Stability of myoglobin: a model for the folding of heme proteins. , 1994, Biochemistry.

[18]  R. L. Baldwin,et al.  Cis proline mutants of ribonuclease A. I. thermal stability , 1992, Protein science : a publication of the Protein Society.

[19]  B Henrissat,et al.  A classification of glycosyl hydrolases based on amino acid sequence similarities. , 1991, The Biochemical journal.

[20]  J. Taylor,et al.  Functional characterization of human recombinant apolipoprotein AIV produced in Escherichia coli. , 1991, European journal of biochemistry.

[21]  W. Chazin,et al.  1H NMR sequential resonance assignments, secondary structure, and global fold in solution of the major (trans-Pro43) form of bovine calbindin D9k. , 1989, Biochemistry.

[22]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[23]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.