Biological Approaches to Spatial Representation - A Survey

In the past decade, a large number of robots have been built that explicitly implement biological navigation behaviours. We review these biomimetic approaches using a framework that allows for a common description of biological and technical navigation behaviour. The review shows that biomimetic systems make signi cant contributions to two elds of research: First, they provide a real world test of models of biological navigation behaviour; second, they make new navigation mechanisms available for technical applications, most notably in the eld of indoor robot navigation. While simpler insect navigation behaviours have been implemented quite successfully, the more complicated waynding capabilities of vertebrates still pose a challenge to current systems.

[1]  A. Kühn Die Orientierung der Tiere im Raum , 1919 .

[2]  E. Tolman,et al.  Studies in spatial learning: Orientation and the short-cut. , 1946, Journal of experimental psychology.

[3]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[4]  G. D. Dunlap,et al.  Piloting and Dead Reckoning , 1970 .

[5]  D Marr,et al.  Simple memory: a theory for archicortex. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[6]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[7]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[8]  K. Nakayama,et al.  Optical Velocity Patterns, Velocity-Sensitive Neurons, and Space Perception: A Hypothesis , 1974, Perception.

[9]  R. Passingham The hippocampus as a cognitive map J. O'Keefe & L. Nadel, Oxford University Press, Oxford (1978). 570 pp., £25.00 , 1979, Neuroscience.

[10]  M. Arbib,et al.  Multiple representations of space underlying behavior , 1982, Behavioral and Brain Sciences.

[11]  Benjamin Kuipers,et al.  A Robust, Qualitative Method for Robot Spatial Learning , 1988, AAAI.

[12]  R. Sutherland,et al.  Configural association theory: The role of the hippocampal formation in learning, memory, and amnesia , 1989, Psychobiology.

[13]  Bruce L. McNaughton,et al.  Spatial representation in the rat: Conceptual, behavioral, and neurophysiological perspectives , 1990 .

[14]  Tod S. Levitt,et al.  Qualitative Navigation for Mobile Robots , 1990, Artif. Intell..

[15]  B. McNaughton,et al.  Hebb-Marr networks and the neurobiological representation of action in space. , 1990 .

[16]  C. Gallistel The organization of learning , 1990 .

[17]  M. Srinivasan,et al.  Range perception through apparent image speed in freely flying honeybees , 1991, Visual Neuroscience.

[18]  F. Dyer Bees acquire route-based memories but not cognitive maps in a familiar landscape , 1991, Animal Behaviour.

[19]  Phillip J. McKerrow,et al.  Introduction to robotics , 1991 .

[20]  Maja J. Matarić,et al.  Navigating with a rat brain: a neurobiologically-inspired model for robot spatial representation , 1991 .

[21]  Benjamin Kuipers,et al.  A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations , 1991, Robotics Auton. Syst..

[22]  P. Colgan,et al.  Animal Homing , 1992, Chapman & Hall Animal Behaviour Series.

[23]  E. Tolman,et al.  Studies in spatial learning. I. Orientation and the short-cut. 1946. , 1992, Journal of experimental psychology. General.

[24]  Thomas S. Collett,et al.  Landmark learning and guidance in insects , 1992 .

[25]  Edward M. Riseman,et al.  Image-based homing , 1992 .

[26]  B. Poucet Spatial cognitive maps in animals: new hypotheses on their structure and neural mechanisms. , 1993, Psychological review.

[27]  Karen Roberts,et al.  Centering behavior using peripheral vision , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[28]  R. Wehner,et al.  The polarization-vision project: championing organismic biology , 1994 .

[29]  David Kortenkamp,et al.  Topological Mapping for Mobile Robots Using a Combination of Sonar and Vision Sensing , 1994, AAAI.

[30]  William H. Warren,et al.  Robot navigation from a Gibsonian viewpoint , 1994, Proceedings of IEEE International Conference on Systems, Man and Cybernetics.

[31]  Michael Recce,et al.  A model of hippocampal function , 1994, Neural Networks.

[32]  Thomas Röfer,et al.  Controlling a Robot With Image-based Homing , 1995 .

[33]  Allen M. Waxman,et al.  A view-based neurocomputational system for relational map-making and navigation in visual environments , 1995, Robotics Auton. Syst..

[34]  Philippe Gaussier,et al.  PerAc: A neural architecture to control artificial animals , 1995, Robotics Auton. Syst..

[35]  Barbara Webb,et al.  Using robots to model animals: a cricket test , 1995, Robotics Auton. Syst..

[36]  Bernhard Schölkopf,et al.  View-based cognitive map learning by an autonomous robot , 1995 .

[37]  P. E. Sharp,et al.  Simulation of spatial learning in the Morris water maze by a neural network model of the hippocampal formation and nucleus accumbens , 1995, Hippocampus.

[38]  Bernhard Schölkopf,et al.  View-Based Cognitive Mapping and Path Planning , 1995, Adapt. Behav..

[39]  Gregor Schöner,et al.  Neural dynamics parametrically controlled by image correlations organize robot navigation , 1996, SNN Symposium on Neural Networks.

[40]  David Kortenkamp,et al.  Prototypes, Location, and Associative Networks (PLAN): Towards a Unified Theory of Cognitive Mapping , 1995, Cogn. Sci..

[41]  David C. Krakauer,et al.  Simple connectionist models of spatial memory in bees , 1995 .

[42]  W E Skaggs,et al.  Deciphering the hippocampal polyglot: the hippocampus as a path integration system. , 1996, The Journal of experimental biology.

[43]  J. O’Keefe,et al.  Geometric determinants of the place fields of hippocampal neurons , 1996, Nature.

[44]  Zhang,et al.  Honeybee navigation en route to the goal: visual flight control and odometry , 1996, The Journal of experimental biology.

[45]  Svetha Venkatesh,et al.  Insect inspired behaviours for the autonomous control of mobile robots , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[46]  RU Muller,et al.  The hippocampus as a cognitive graph , 1996, The Journal of general physiology.

[47]  Tony J. Prescott,et al.  Spatial Representation for Navigation in Animats , 1996, Adapt. Behav..

[48]  R. Wehner,et al.  Visual navigation in insects: coupling of egocentric and geocentric information , 1996, The Journal of experimental biology.

[49]  M. Recce,et al.  Memory for places: A navigational model in support of Marr's theory of hippocampal function , 1996, Hippocampus.

[50]  Thomas Röfer,et al.  Controlling a Wheelchair with Image-based Homing , 1997 .

[51]  M. Srinivasan,et al.  Reflective surfaces for panoramic imaging. , 1997, Applied optics.

[52]  PerspectivesHanspeter A. MallotMax Behavior{oriented Approaches to Cognition: Theoretical Perspectives , 1997 .

[53]  Karin Schweizer,et al.  Spatial Cognition: The Role of Landmark, Route, and Survey Knowledge in Human and Robot Navigation , 1997, GI Jahrestagung.

[54]  B L McNaughton,et al.  Path Integration and Cognitive Mapping in a Continuous Attractor Neural Network Model , 1997, The Journal of Neuroscience.

[55]  Hiroshi Kobayashi,et al.  An Autonomous Agent Navigating with a Polarized Light Compass , 1997, Adapt. Behav..

[56]  J O'Keefe,et al.  Robotic and neuronal simulation of the hippocampus and rat navigation. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[57]  Jean-Arcady Meyer,et al.  BIOLOGICALLY BASED ARTIFICIAL NAVIGATION SYSTEMS: REVIEW AND PROSPECTS , 1997, Progress in Neurobiology.

[58]  Heinrich H. Bülthoff,et al.  Simulation and robot implementation of visual orientation behaviors of flies , 1998 .

[59]  Dimitrios Lambrinos,et al.  Modeling ant navigation with an autonomous agent , 1998 .

[60]  Karl Friedrich Wender,et al.  Judging Spatial Relations from Memory , 1998, Spatial Cognition.

[61]  Sebastian Thrun,et al.  Learning Metric-Topological Maps for Indoor Mobile Robot Navigation , 1998, Artif. Intell..

[62]  Bernhard Schölkopf,et al.  Learning View Graphs for Robot Navigation , 1997, AGENTS '97.

[63]  Benjamin Kuipers,et al.  A Hierarchy of Qualitative Representations for Space , 1998, Spatial Cognition.

[64]  Bernhard Schölkopf,et al.  Where did I take that snapshot? Scene-based homing by image matching , 1998, Biological Cybernetics.

[65]  Hanspeter A. Mallot,et al.  Navigation and Acquisition of Spatial Knowledge in a Virtual Maze , 1998, Journal of Cognitive Neuroscience.

[66]  Barbara Webb,et al.  Simulated and situated models of chemical trail following in ants , 1998 .

[67]  Ulrich Nehmzow,et al.  Landmark-based navigation for a mobile robot , 1998 .