Contribution to the Integrated Control of Biped Locomotion Mechanisms

This work is concerned with the integrated dynamic control of humanoid locomotion mechanisms based on the spatial dynamic model of the humanoid mechanism, a servo system model, and an environment model. The control scheme was synthesized using the centralized model of the system and the hierarchical principle, with tactical and executive control levels. The proposed structure of the dynamic controller involves four feedback loops: position-velocity feedback at the robotic mechanism joints, dynamic reaction feedback at Zero-Moment Point, impact force feedback at the instant when the foot strikes the ground, and the load feedback of the mechanism joints. Simulation experiments are carried out for a number of characteristic examples. The numerical results obtained, along with theoretical study, serve as the basis for a critical evaluation of the performance of the devised controller.

[1]  Jong Hyeon Park,et al.  Impedance control for biped robot locomotion , 2001, IEEE Trans. Robotics Autom..

[2]  Jong H. Park,et al.  Hybrid control for biped robots using impedance control and computed-torque control , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[3]  Miomir Vukobratovic,et al.  How to Control Artificial Anthropomorphic Systems , 1973, IEEE Trans. Syst. Man Cybern..

[4]  H. Inoue,et al.  Dynamic walking pattern generation for a humanoid robot based on optimal gradient method , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[5]  Yuri Ekalo,et al.  New approach to control of robotic manipulators interacting with dynamic environment , 1996, Robotica.

[6]  Chee-Meng Chew,et al.  Virtual Model Control: An Intuitive Approach for Bipedal Locomotion , 2001, Int. J. Robotics Res..

[7]  Kikuo Fujimura,et al.  The intelligent ASIMO: system overview and integration , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Kazuhito Yokoi,et al.  Experimental Study of Biped Locomotion of Humanoid Robot HRP-1S , 2002, ISER.

[9]  Takayuki Furuta,et al.  Design and construction of a series of compact humanoid robots and development of biped walk control strategies , 2001, Robotics Auton. Syst..

[10]  Miomir Vukobratovic,et al.  Contribution to the dynamic study of humanoid robots interacting with dynamic environment , 2004, Robotica.

[11]  Miomir Vukobratović,et al.  Biped Locomotion: Dynamics, Stability, Control and Application , 1990 .

[12]  M. Vukobratovic,et al.  Mathematical models of general anthropomorphic systems , 1973 .

[13]  Peter K. Allen,et al.  Visual servoing by partitioning degrees of freedom , 2001, IEEE Trans. Robotics Autom..

[14]  Kazuhito Yokoi,et al.  Balancing a humanoid robot using backdrive concerned torque control and direct angular momentum feedback , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[15]  Atsuo Takanishi,et al.  REALIZATION OF DYNAMIC WALKING BY THE BIPED WALKING ROBOT WL-10RD. , 1985 .

[16]  Carlos Canudas-de-Wit,et al.  Generation of energy optimal complete gait cycles for biped robots , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[17]  S. Nakaura,et al.  Balance control analysis of humanoid robot based on ZMP feedback control , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Masayuki Inaba,et al.  AutoBalancer: An Online Dynamic Balance Compensation Scheme for Humanoid Robots , 2000 .

[19]  Joze Balic Neural-Network-Based Numerical Control for Milling Machine , 2004, J. Intell. Robotic Syst..

[20]  Atsuo Takanishi,et al.  Waseda biped humanoid robots realizing human-like motion , 2000, 6th International Workshop on Advanced Motion Control. Proceedings (Cat. No.00TH8494).

[21]  Miomir Vukobratovic,et al.  Zero-Moment Point - Thirty Five Years of its Life , 2004, Int. J. Humanoid Robotics.

[22]  Leonard Barolli,et al.  Real time gait generation for autonomous humanoid robots: A case study for walking , 2003, Robotics Auton. Syst..

[23]  Kazuhito Yokoi,et al.  Biped walking pattern generation by a simple three-dimensional inverted pendulum model , 2003, Adv. Robotics.

[24]  Miomir Vukobratović,et al.  Intelligent Control of Robotic Systems , 2003 .

[25]  Kazuhito Yokoi,et al.  Planning walking patterns for a biped robot , 2001, IEEE Trans. Robotics Autom..

[26]  D. Stewart,et al.  A Platform with Six Degrees of Freedom , 1965 .

[27]  Yoshihiko Nakamura,et al.  Whole-body Cooperative Balancing of Humanoid Robot using COG Jacobian , 2002 .

[28]  Atsuo Takanishi,et al.  Development of a bipedal humanoid robot-control method of whole body cooperative dynamic biped walking , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[29]  M. Vukobratovic,et al.  On the stability of anthropomorphic systems , 1972 .

[30]  M Vukobratović,et al.  Contribution to the synthesis of biped gait. , 1969, IEEE transactions on bio-medical engineering.

[31]  V. Potkonjak,et al.  Human and Humanoid Dynamics , 2004, J. Intell. Robotic Syst..