Multivariable fractional order PID controller design via LMI approach

Abstract In this paper, we study the design problem of multivariable fractional-order (FO) PID controllers which guarantee the stability of the FO closed-loop systems. The idea is to transform the problem of FO PID controller design to that of static output feedback (SOF) controller design for an FO system in descriptor form. In terms of linear matrix inequalities, the PID gains can be found once the SOF matrix is obtained. Finally, a numerical example is provided to illustrate the effectiveness of the proposed method.

[1]  Alain Oustaloup,et al.  From fractal robustness to the CRONE control , 1999 .

[2]  J. Sabatier,et al.  LMI Tools for Stability Analysis of Fractional Systems , 2005 .

[3]  Jun-Guo Lu,et al.  Robust Stability and Stabilization of Fractional-Order Interval Systems: An LMI Approach , 2009, IEEE Transactions on Automatic Control.

[4]  Pierre Apkarian,et al.  Robust pole placement in LMI regions , 1999, IEEE Trans. Autom. Control..

[5]  Tong Heng Lee,et al.  An improvement on multivariable PID controller design via iterative LMI approach , 2004, Autom..

[6]  Y. Chen,et al.  Tuning fractional order proportional integral controllers for fractional order systems , 2010 .

[7]  P. Gahinet,et al.  H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..

[8]  P. Khargonekar,et al.  Robust stabilization of uncertain linear systems: quadratic stabilizability and H/sup infinity / control theory , 1990 .

[9]  Yangquan Chen,et al.  Robust controllability of interval fractional order linear time invariant systems , 2006, Signal Process..

[10]  Igor Podlubny,et al.  Mittag-Leffler stability of fractional order nonlinear dynamic systems , 2009, Autom..

[11]  Anthony N. Michel,et al.  Stability of viscoelastic control systems , 1987 .

[12]  Alain Oustaloup,et al.  The CRONE Control of Resonant Plants: Application to a Flexible Transmission , 1995, Eur. J. Control.

[13]  Pole-clustering characterization via LMI for descriptor systems , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[14]  D. Sierociuk,et al.  Stability of Discrete Fractional Order State-space Systems , 2008 .

[15]  I. Podlubny Fractional differential equations , 1998 .

[16]  Yangquan Chen,et al.  Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality , 2007, Appl. Math. Comput..

[17]  Mohammad Saleh Tavazoei,et al.  A note on the stability of fractional order systems , 2009, Math. Comput. Simul..

[18]  Yangquan Chen,et al.  Necessary and sufficient stability condition of fractional-order interval linear systems , 2008, Autom..

[19]  Y. Chen,et al.  A comparative introduction of four fractional order controllers , 2002, Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No.02EX527).

[20]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[21]  Dominik Sierociuk,et al.  Adaptive Feedback Control of Fractional Order Discrete State-Space Systems , 2005, International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06).

[22]  Yangquan Chen,et al.  Fractional order [proportional derivative] controller for a class of fractional order systems , 2009, Autom..

[23]  Pascal Gahinet,et al.  H/sub /spl infin// design with pole placement constraints: an LMI approach , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[24]  YangQuan Chen,et al.  Fractional order PID control of a DC-motor with elastic shaft: a case study , 2006, 2006 American Control Conference.

[25]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[26]  Jonathan R. Partington,et al.  Analysis of fractional delay systems of retarded and neutral type , 2002, Autom..

[27]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[28]  Jun-Guo Lu,et al.  Robust Stability and Stabilization of Fractional-Order Interval Systems with the Fractional Order $\alpha$: The $0≪\alpha≪1$ Case , 2010, IEEE Transactions on Automatic Control.

[29]  Mathieu Moze,et al.  On stability of fractional order systems , 2008 .