Universal simulation of Hamiltonians using a finite set of control operations

Any quantum system with a non-trivial Hamiltonian is able to simulate any other Hamiltonian evolution provided that a sufficiently large group of unitary control operations is available. We show that there exist finite groups with this property and present a sufficient condition in terms of group characters. We give examples of such groups in dimension 2 and 3. Furthermore, we show that it is possible to simulate an arbitrary bipartite interaction by a given one using such groups acting locally on the subsystems.

[1]  C. Slichter Principles of magnetic resonance , 1963 .

[2]  A. Klappenecker,et al.  A Remark on Unitary Error Bases , 2000 .

[3]  D. W. Leung Simulation and reversal of n-qubit Hamiltonians using Hadamard matrices , 2001 .

[4]  M. Horodecki,et al.  Dynamics of quantum entanglement , 2000, quant-ph/0008115.

[5]  Seth Lloyd,et al.  Universal Control of Decoupled Quantum Systems , 1999 .

[6]  Paolo Zanardi Stabilizing quantum information , 2000 .

[7]  Howard Barnum,et al.  Quantum message authentication codes , 2001, quant-ph/0103123.

[8]  Haeberlen Ulrich,et al.  High resolution NMR in solids : selective averaging , 1976 .

[9]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[10]  J. I. Cirac,et al.  Optimal simulation of nonlocal Hamiltonians using local operations and classical communication , 2001 .

[11]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[12]  D. Janzing,et al.  DistinguishingnHamiltonians onCnby a single measurement , 2001, quant-ph/0103021.

[13]  E. Knill Group representations, error bases and quantum codes , 1996, quant-ph/9608049.

[14]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[15]  M. Nielsen,et al.  Universal quantum computation and simulation using any entangling Hamiltonian and local unitaries , 2001, quant-ph/0106064.

[16]  Jean-Pierre Serre,et al.  Linear representations of finite groups , 1977, Graduate texts in mathematics.

[17]  R. Feynman Simulating physics with computers , 1999 .

[18]  N. Sloane,et al.  Quantum error correction via codes over GF(4) , 1996, Proceedings of IEEE International Symposium on Information Theory.

[19]  R. Werner All teleportation and dense coding schemes , 2000, quant-ph/0003070.

[20]  Steane,et al.  Simple quantum error-correcting codes. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[21]  Michael A. Nielsen,et al.  Majorization and the interconversion of bipartite states , 2001, Quantum Inf. Comput..

[22]  Charles H. Bennett,et al.  Optimal Simulation of Two-Qubit Hamiltonians Using General Local Operations , 2001, quant-ph/0107035.

[23]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[24]  R. Brockett,et al.  Time optimal control in spin systems , 2000, quant-ph/0006114.

[25]  Pawel Wocjan,et al.  Simulating arbitrary pair-interactions by a given Hamiltonian: graph-theoretical bounds on the time-complexity , 2002, Quantum Inf. Comput..

[26]  Marcus Stollsteimer,et al.  Suppression of arbitrary internal coupling in a quantum register , 2001 .

[27]  A. Pines,et al.  Violation of the Spin-Temperature Hypothesis , 1970 .

[28]  E. Knill Non-binary unitary error bases and quantum codes , 1996, quant-ph/9608048.

[29]  P. Zanardi Symmetrizing Evolutions , 1998, quant-ph/9809064.

[30]  J. Conway,et al.  ATLAS of Finite Groups , 1985 .

[31]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[32]  Pawel Wocjan,et al.  Complexity of inverting n-spin interactions: Arrow of time in quantum control , 2001 .

[33]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[34]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[35]  J. Cirac,et al.  Nonlocal Hamiltonian simulation assisted by local operations and classical communication , 2002 .

[36]  D. Janzing,et al.  Distinguishing n Hamiltonians on Cn by a single measurement , 2002 .

[37]  I. Isaacs Character Theory of Finite Groups , 1976 .

[38]  Frederik Armknecht,et al.  Quantum control without access to the controlling interaction , 2002 .