Universal simulation of Hamiltonians using a finite set of control operations
暂无分享,去创建一个
[1] C. Slichter. Principles of magnetic resonance , 1963 .
[2] A. Klappenecker,et al. A Remark on Unitary Error Bases , 2000 .
[3] D. W. Leung. Simulation and reversal of n-qubit Hamiltonians using Hadamard matrices , 2001 .
[4] M. Horodecki,et al. Dynamics of quantum entanglement , 2000, quant-ph/0008115.
[5] Seth Lloyd,et al. Universal Control of Decoupled Quantum Systems , 1999 .
[6] Paolo Zanardi. Stabilizing quantum information , 2000 .
[7] Howard Barnum,et al. Quantum message authentication codes , 2001, quant-ph/0103123.
[8] Haeberlen Ulrich,et al. High resolution NMR in solids : selective averaging , 1976 .
[9] G. Bodenhausen,et al. Principles of nuclear magnetic resonance in one and two dimensions , 1987 .
[10] J. I. Cirac,et al. Optimal simulation of nonlocal Hamiltonians using local operations and classical communication , 2001 .
[11] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[12] D. Janzing,et al. DistinguishingnHamiltonians onCnby a single measurement , 2001, quant-ph/0103021.
[13] E. Knill. Group representations, error bases and quantum codes , 1996, quant-ph/9608049.
[14] Viola,et al. Theory of quantum error correction for general noise , 2000, Physical review letters.
[15] M. Nielsen,et al. Universal quantum computation and simulation using any entangling Hamiltonian and local unitaries , 2001, quant-ph/0106064.
[16] Jean-Pierre Serre,et al. Linear representations of finite groups , 1977, Graduate texts in mathematics.
[17] R. Feynman. Simulating physics with computers , 1999 .
[18] N. Sloane,et al. Quantum error correction via codes over GF(4) , 1996, Proceedings of IEEE International Symposium on Information Theory.
[19] R. Werner. All teleportation and dense coding schemes , 2000, quant-ph/0003070.
[20] Steane,et al. Simple quantum error-correcting codes. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[21] Michael A. Nielsen,et al. Majorization and the interconversion of bipartite states , 2001, Quantum Inf. Comput..
[22] Charles H. Bennett,et al. Optimal Simulation of Two-Qubit Hamiltonians Using General Local Operations , 2001, quant-ph/0107035.
[23] Gottesman. Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[24] R. Brockett,et al. Time optimal control in spin systems , 2000, quant-ph/0006114.
[25] Pawel Wocjan,et al. Simulating arbitrary pair-interactions by a given Hamiltonian: graph-theoretical bounds on the time-complexity , 2002, Quantum Inf. Comput..
[26] Marcus Stollsteimer,et al. Suppression of arbitrary internal coupling in a quantum register , 2001 .
[27] A. Pines,et al. Violation of the Spin-Temperature Hypothesis , 1970 .
[28] E. Knill. Non-binary unitary error bases and quantum codes , 1996, quant-ph/9608048.
[29] P. Zanardi. Symmetrizing Evolutions , 1998, quant-ph/9809064.
[30] J. Conway,et al. ATLAS of Finite Groups , 1985 .
[31] S. Lloyd,et al. DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.
[32] Pawel Wocjan,et al. Complexity of inverting n-spin interactions: Arrow of time in quantum control , 2001 .
[33] Seth Lloyd,et al. Universal Quantum Simulators , 1996, Science.
[34] E. Knill,et al. DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.
[35] J. Cirac,et al. Nonlocal Hamiltonian simulation assisted by local operations and classical communication , 2002 .
[36] D. Janzing,et al. Distinguishing n Hamiltonians on Cn by a single measurement , 2002 .
[37] I. Isaacs. Character Theory of Finite Groups , 1976 .
[38] Frederik Armknecht,et al. Quantum control without access to the controlling interaction , 2002 .