CMB E B and T B cross-spectrum estimation via pseudospectrum techniques

We discuss methods for estimating $EB$ and $TB$ spectra of the cosmic microwave background anisotropy maps covering limited sky area. Such odd-parity correlations are expected to vanish whenever parity is not broken. As this is indeed the case in the standard cosmologies, any evidence to the contrary would have a profound impact on our theories of the early Universe. Such correlations could also become a sensitive diagnostic of some particularly insidious instrumental systematics. In this work we introduce three different unbiased estimators based on the so-called standard and pure pseudo-spectrum techniques and later assess their performance by means of extensive Monte Carlo simulations performed for different experimental configurations. We find that a hybrid approach combining a pure estimate of $B$-mode multipoles with a standard one for $E$-mode (or $T$) multipoles, leads to the smallest error bars for both $EB$ (or $TB$ respectively) spectra as well as for the three other polarization-related angular power spectra (i.e., $EE$, $BB$, and $TE$). However, if both $E$ and $B$ multipoles are estimated using the pure technique, the loss of precision for the $EB$ spectrum is not larger than $\ensuremath{\sim}30%$. Moreover, for the experimental configurations considered here, the statistical uncertainties-due to sampling variance and instrumental noise-of the pseudo-spectrum estimates is at most a factor $\ensuremath{\sim}1.4$ for $TT$, $EE$, and $TE$ spectra and a factor $\ensuremath{\sim}2$ for $BB$, $TB$, and $EB$ spectra, higher than the most optimistic Fisher estimate of the variance.

[1]  D. Baskaran,et al.  Separating E and B types of polarization on an incomplete sky , 2010, 1005.1201.

[2]  Kendrick M. Smith Pseudo- C ℓ estimators which do not mix E and B modes , 2006 .

[3]  B polarization of the CMB from Faraday rotation , 2004, astro-ph/0405396.

[4]  M. Halpern,et al.  First Year Wilkinson Microwave Anisotropy Probe Observations: Dark Energy Induced Correlation with Radio Sources , 2003, The Astrophysical Journal.

[5]  Jaiseung Kim,et al.  How to make a clean separation between CMB E and B modes with proper foreground masking , 2010, 1010.2636.

[6]  L. Pogosian,et al.  Signatures of kinetic and magnetic helicity in the cosmic microwave background radiation , 2002 .

[7]  R. Stompor,et al.  Polarized CMB power spectrum estimation using the pure pseudo-cross-spectrum approach , 2009, 0903.2350.

[8]  Matias Zaldarriaga,et al.  Gravitational lensing effect on cosmic microwave background polarization , 1998, astro-ph/9803150.

[9]  U. Seljak,et al.  An all sky analysis of polarization in the microwave background , 1996, astro-ph/9609170.

[10]  M. Zaldarriaga,et al.  Benchmark parameters for CMB polarization experiments , 2002, astro-ph/0210096.

[11]  Sean M. Carroll QUINTESSENCE AND THE REST OF THE WORLD : SUPPRESSING LONG-RANGE INTERACTIONS , 1998 .

[12]  Faraday Rotation of the Cosmic Microwave Background Polarization and Primordial Magnetic Field Properties , 2004, astro-ph/0405420.

[13]  XSPECT, estimation of the angular power spectrum by computing cross-power spectra with analytical error bars , 2004, astro-ph/0405575.

[14]  Matias Zaldarriaga,et al.  E/B decomposition of finite pixelized CMB maps , 2003 .

[15]  Marc Kamionkowski,et al.  Cosmological signature of new parity violating interactions , 1999 .

[16]  Abraham Loeb,et al.  Faraday Rotation of Microwave Background Polarization by a Primordial Magnetic Field , 1996 .

[17]  M. G. Hauser,et al.  Statistical analysis of catalogs of extragalactic objects. II - The Abell catalog of rich clusters , 1973 .

[18]  P. Naselsky,et al.  CMB E/B decomposition of incomplete sky: a pixel space approach , 2010, 1003.2911.

[19]  T. Kahniashvili,et al.  Effects of cosmological magnetic helicity on the cosmic microwave background , 2005, astro-ph/0503709.

[20]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: The Angular Power Spectrum , 2003, astro-ph/0302217.

[21]  D. Varshalovich,et al.  Quantum Theory of Angular Momentum , 1988 .

[22]  Adrian T. Lee,et al.  EBEX: a balloon-borne CMB polarization experiment , 2010, Astronomical Telescopes + Instrumentation.

[23]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[24]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.

[25]  R. Stompor,et al.  Maximum likelihood, parametric component separation and CMB B-mode detection in suborbital experiments , 2010, 1004.4756.

[26]  Matias Zaldarriaga,et al.  Primordial B-mode diagnostics and self-calibrating the CMB polarization , 2009, 0912.3532.

[27]  Radek Stompor,et al.  Spherical Harmonic Transform with GPUs , 2010, Euro-Par Workshops.

[28]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) first year observations: TE polarization , 2003, astro-ph/0302213.

[29]  Bharat Ratra,et al.  Faraday rotation of the cosmic microwave background polarization by a stochastic magnetic field , 2004, astro-ph/0409767.

[30]  Albert Stebbins,et al.  A Probe of Primordial Gravity Waves and Vorticity , 1997 .

[31]  Guo-chin Liu,et al.  Correlation Functions of CMB Anisotropy and Polarization , 1997, astro-ph/9710012.

[32]  Matias Zaldarriaga,et al.  General solution to the E-B mixing problem , 2007 .

[33]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.