DXNet: An Encoder-Decoder Architecture with XSPP for Semantic Image Segmentation in Street Scenes

Semantic image segmentation plays a crucial role in scene understanding tasks. In autonomous driving, the driving of the vehicle causes the scale changes of objects in the street scene. Although multi-scale features can be learned through concatenating multiple different atrous-convolved features, it is difficult to accurately segment pedestrians with only partial feature information due to factors such as occlusion. Therefore, we propose a Xiphoid Spatial Pyramid Pooling method integrated with detailed information. This method, while connecting the features of multiple atrous-convolved, retains the image-level features of target boundary information. Based on the above methods, we design an encoder-decoder architecture called DXNet. The encoder is composed of a deep convolution neural network and two XSPP modules, and the decoder decodes the advanced features through up-sampling operation and skips connection to gradually restore the target boundary. We evaluate the effectiveness of our approach on the Cityscapes dataset. Experimental results show that our method performs better in the case of occlusion, and the mean intersection-over-union score of our model outperforms some representative works.

[1]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Sebastian Ramos,et al.  The Cityscapes Dataset for Semantic Urban Scene Understanding , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Jian Sun,et al.  Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition , 2015, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Kun Yu,et al.  DenseASPP for Semantic Segmentation in Street Scenes , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[5]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[6]  Roberto Cipolla,et al.  SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  George Papandreou,et al.  Rethinking Atrous Convolution for Semantic Image Segmentation , 2017, ArXiv.

[9]  Vladlen Koltun,et al.  Multi-Scale Context Aggregation by Dilated Convolutions , 2015, ICLR.

[10]  Ian D. Reid,et al.  RefineNet: Multi-path Refinement Networks for High-Resolution Semantic Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Wei Liu,et al.  DSSD : Deconvolutional Single Shot Detector , 2017, ArXiv.

[12]  Xiaogang Wang,et al.  Pyramid Scene Parsing Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  George Papandreou,et al.  Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation , 2018, ECCV.

[14]  Bastian Leibe,et al.  Full-Resolution Residual Networks for Semantic Segmentation in Street Scenes , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  François Chollet,et al.  Xception: Deep Learning with Depthwise Separable Convolutions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).