The Mechanics of Machining at the Microscale: Assessment of the Current State of the Science

This paper provides a comprehensive review of the literature, mostly of the last 10-15 years, that is enhancing our understanding of the mechanics of the rapidly growing field of micromachining. The paper focuses on the mechanics of the process, discussing both experimental and modeling studies, and includes some work that, while not directly focused on micromachining, provides important insights to the field. Experimental work includes the size effect and minimum chip thickness effect, elastic-plastic deformation, and microstructure effects in micromachining. Modeling studies include molecular dynamics methods, finite element methods, mechanistic modeling work, and the emerging field of multiscale modeling. Some comments on future needs and directions are also offered.

[1]  N. Chandrasekaran,et al.  Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach , 1998 .

[2]  Jeong-Du Kim,et al.  Theoretical analysis of micro-cutting characteristics in ultra-precision machining , 1995 .

[3]  Suet To,et al.  Ultraprecision diamond turning of aluminium single crystals , 1997 .

[4]  William J. Endres,et al.  A New Model and Analysis of Orthogonal Machining With an Edge-Radiused Tool , 2000 .

[5]  Toshimichi Moriwaki,et al.  Ultraprecision Metal Cutting — The Past, the Present and the Future , 1991 .

[6]  Hiroaki Tanaka,et al.  Feasibility Study on Ultimate Accuracy in Microcutting Using Molecular Dynamics Simulation , 1993 .

[7]  I. F. Stowers,et al.  A molecular dynamics model of the orthogonal cutting process , 1990 .

[8]  Richard E. DeVor,et al.  Microstructure-Level Modeling of Ductile Iron Machining , 2001, Manufacturing Engineering.

[9]  D. A. Lucca,et al.  Energy Dissipation and Tool-Workpiece Contact in Ultra-Precision Machining , 1994 .

[10]  Leonid V. Zhigilei,et al.  Computational model for multiscale simulation of laser ablation , 2001 .

[11]  Richard E. DeVor,et al.  An Evaluation of Ploughing Models for Orthogonal Machining , 1999 .

[12]  R. Komanduri,et al.  Energy dissipation in the ultraprecision machining of copper , 1991 .

[13]  Don A. Lucca,et al.  Effect of Tool Edge Geometry on Energy Dissipation in Ultraprecision Machining , 1993 .

[14]  N. Fang,et al.  Slip-line modeling of machining with a rounded-edge tool—Part II: analysis of the size effect and the shear strain-rate , 2003 .

[15]  G. L. Benavides,et al.  Micromilling of metal alloys with focused ion beam–fabricated tools , 1999 .

[16]  J. Ni,et al.  Experimental analysis of chip formation in micro-milling , 2002 .

[17]  D. Adams,et al.  Microgrooving and microthreading tools for fabricating curvilinear features , 2000 .

[18]  Kai Egashira,et al.  Ultrasonic Vibration Drilling of Microholes in Glass , 2002 .

[19]  Kazuaki Iwata,et al.  ULTRA-HIGH PRECISION DIAMOND CUTTING OF COPPER , 1984 .

[20]  Ibrahim N. Tansel,et al.  Micro-end-milling—I. Wear and breakage , 1998 .

[21]  William J. Endres,et al.  A High-Magnification Experimental Study of Orthogonal Cutting With Edge-Honed Tools , 2001, Manufacturing Engineering.

[22]  Chi Fai Cheung,et al.  Effect of crystallographic orientation in diamond turning of copper single crystals , 2000 .

[23]  Noam Bernstein,et al.  Spanning the length scales in dynamic simulation , 1998 .

[24]  Ibrahim N. Tansel,et al.  Tool wear estimation in micro-machining.: Part I: tool usage–cutting force relationship , 2000 .

[25]  Junichi Sato,et al.  Experimental Investigation of Micro Scratching of Two-Phase Steel: Plastic Flow Mechanisms of the Ferrite and Cementite Phases , 2003 .

[26]  Kai Egashira,et al.  Micro-drilling of monocrystalline silicon using a cutting tool , 2002 .

[27]  Lothar Bohn,et al.  Microstructure grooves with a width of less than 50 μm cut with ground hard metal micro end mills , 1999 .

[28]  Shreyes N. Melkote,et al.  510 An Explanation for the Size-effect in Machining using Strain Gradient Plasticity , 2002 .

[29]  R. DeVor,et al.  Microstructure-Level Force Prediction Model for Micro-Milling of Multi-Phase Materials , 2001, Manufacturing Engineering.

[30]  Matthew A. Davies,et al.  A Summary of Micro-milling Studies | NIST , 1999 .

[31]  T. Hattori,et al.  Shell-body fabrication for micromachines , 1995 .

[32]  Ranga Komanduri,et al.  Orientation Effects in Nanometric Cutting of Single Crystal Materials: An MD Simulation Approach , 1999 .

[33]  J. Q. Broughton,et al.  Concurrent coupling of length scales: Methodology and application , 1999 .

[34]  Toshimichi Moriwaki,et al.  Combined Stress, Material Flow and Heat Analysis of Orthogonal Micromachining of Copper , 1993 .

[35]  Martin B.G. Jun,et al.  Cutting Mechanisms and Their Influence on Dynamic Forces, Vibrations and Stability in Micro-Endmilling , 2004 .

[36]  D. Spath,et al.  Requirements of an industrially applicable microcutting process for steel micro-structures , 2002 .

[37]  Shiv Gopal Kapoor,et al.  A Slip-Line Field for Ploughing During Orthogonal Cutting , 1997, Manufacturing Science and Engineering: Volume 2.

[38]  Hiroaki Tanaka,et al.  Minimum thickness of cut in micromachining , 1992 .

[39]  Craig R. Friedrich,et al.  Development of the Micromilling Prolcess for High-Aspect-Ratio Microstructures , 1996 .

[40]  Richard E. DeVor,et al.  On the Modeling and Analysis of Machining Performance in Micro-Endmilling, Part II: Cutting Force Prediction , 2004 .

[41]  H. Zahouani,et al.  Understanding and quantification of elastic and plastic deformation during a scratch test , 1998 .

[42]  Richard E. DeVor,et al.  On the Modeling and Analysis of Machining Performance in Micro-Endmilling, Part I: Surface Generation , 2004 .

[43]  Craig R. Friedrich,et al.  Micro heat exchangers fabricated by diamond machining , 1994 .

[44]  J. H. Dautzenberg,et al.  Bluntness of the tool and process forces in high-precision cutting , 1991 .

[45]  H. Weule,et al.  Micro-Cutting of Steel to Meet New Requirements in Miniaturization , 2001 .

[46]  Toshimichi Moriwaki,et al.  Effect of Cutting Heat on Machining Accuracy in Ultra-Precision Diamond Turning , 1990 .

[47]  Shuliang Dong,et al.  Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining , 1996 .

[48]  Toshio Sata,et al.  On a Possible Mechanism of Shear Deformation in Nanoscale Cutting , 1994 .

[49]  Kazuaki Iwata,et al.  Chip Formation Mechanism in Single Crystal Cutting of β-Brass , 1980 .

[50]  H. T. Zhang,et al.  A three-zone model and solution of shear angle in orthogonal machining , 1991 .

[51]  N. Chandrasekaran,et al.  M.D. Simulation of nanometric cutting of single crystal aluminum–effect of crystal orientation and direction of cutting , 2000 .

[52]  Hiroaki Tanaka,et al.  An Atomistic Analysis of Nanometric Chip Removal as Affected by Tool-Work Interaction in Diamond Turning , 1991 .

[53]  S. Chandrasekar,et al.  An Intrinsic Size-Effect in Machining Due to the Strain Gradient , 2001, Manufacturing Engineering.

[54]  Don A. Lucca,et al.  Aspects of Surface Generation in Orthogonal Ultraprecision Machining , 1994 .

[55]  George Z. Voyiadjis,et al.  Coupling of Length Scales: Hybrid Molecular Dynamics and Finite Element Approach for Multiscale Nanodevice Simulations , 2000 .

[56]  Masayoshi Esashi,et al.  Microflow devices and systems , 1994 .

[57]  P. Albrecht,et al.  New Developments in the Theory of the Metal-Cutting Process: Part I. The Ploughing Process in Metal Cutting , 1960 .

[58]  Y. Takeuchi,et al.  Ultraprecision 3D Micromachining of Glass , 1996 .

[59]  Ronald O. Scattergood,et al.  Ductile‐Regime Machining of Germanium and Silicon , 1990 .