Perspective on Performance, Cost, and Technical Challenges for Practical Dual-Ion Batteries

[1]  Huakun Liu,et al.  Three-dimensional carbon frameworks enabling MoS2 as anode for dual ion batteries with superior sodium storage properties , 2018, Energy Storage Materials.

[2]  Li Li,et al.  A Dual-graphite Battery with Pure 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) Imide as the Electrolyte , 2018, Energy Technology.

[3]  Xu Han,et al.  Low Cost and Superior Safety Industrial Grade Lithium Dual-Ion Batteries with a Second Life , 2018, Energy Technology.

[4]  G. Cui,et al.  Mesocarbon microbead based dual-carbon batteries towards low cost energy storage devices , 2018, Journal of Power Sources.

[5]  Yongbing Tang,et al.  A Review on the Features and Progress of Dual‐Ion Batteries , 2018 .

[6]  C. Li,et al.  Preparation of Si-graphite dual-ion batteries by tailoring the voltage window of pretreated Si-anodes , 2018, Materials Today Energy.

[7]  H. Dai,et al.  An operando X-ray diffraction study of chloroaluminate anion-graphite intercalation in aluminum batteries , 2018, Proceedings of the National Academy of Sciences.

[8]  M. Winter,et al.  New insights into electrochemical anion intercalation into carbonaceous materials for dual-ion batteries: Impact of the graphitization degree , 2018 .

[9]  Fan Zhang,et al.  A Novel Calcium‐Ion Battery Based on Dual‐Carbon Configuration with High Working Voltage and Long Cycling Life , 2018, Advanced science.

[10]  Hui‐Ming Cheng,et al.  Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage , 2018, Nature Chemistry.

[11]  M. Winter,et al.  Performance and cost of materials for lithium-based rechargeable automotive batteries , 2018 .

[12]  S. Passerini,et al.  A cost and resource analysis of sodium-ion batteries , 2018 .

[13]  D. Yu,et al.  Designing high-power graphite-based dual-ion batteries , 2018 .

[14]  V. Presser,et al.  Two-Dimensional Molybdenum Carbide (MXene) with Divacancy Ordering for Brackish and Seawater Desalination via Cation and Anion Intercalation , 2018 .

[15]  M. Winter,et al.  Pre-Lithiation Strategies for Rechargeable Energy Storage Technologies: Concepts, Promises and Challenges , 2018 .

[16]  Prasant Kumar Nayak,et al.  From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises. , 2018, Angewandte Chemie.

[17]  M. Winter,et al.  Towards high-performance dual-graphite batteries using highly concentrated organic electrolytes , 2018 .

[18]  M. Winter,et al.  Enabling bis(fluorosulfonyl)imide-based ionic liquid electrolytes for application in dual-ion batteries , 2018 .

[19]  M. Winter,et al.  In Situ Dilatometric Study of the Binder Influence on the Electrochemical Intercalation of Bis(trifluoromethanesulfonyl) imide Anions into Graphite , 2017 .

[20]  N. Sharma,et al.  An Initial Review of the Status of Electrode Materials for Potassium‐Ion Batteries , 2017 .

[21]  Byungju Lee,et al.  Exploiting Biological Systems: Toward Eco-Friendly and High-Efficiency Rechargeable Batteries , 2017 .

[22]  Di-Yan Wang,et al.  Freestanding Cathode Electrode Design for High-Performance Sodium Dual-Ion Battery , 2017 .

[23]  M. Winter,et al.  Alternative electrochemical energy storage: potassium-based dual-graphite batteries , 2017 .

[24]  M. Winter,et al.  Running out of lithium? A route to differentiate between capacity losses and active lithium losses in lithium-ion batteries. , 2017, Physical chemistry chemical physics : PCCP.

[25]  Ling Fan,et al.  Potassium-Based Dual Ion Battery with Dual-Graphite Electrode. , 2017, Small.

[26]  Xiulei Ji,et al.  Anion Hosting Cathodes in Dual-Ion Batteries , 2017 .

[27]  Fan Zhang,et al.  A Dual‐Carbon Battery Based on Potassium‐Ion Electrolyte , 2017 .

[28]  Bingan Lu,et al.  Soft Carbon as Anode for High‐Performance Sodium‐Based Dual Ion Full Battery , 2017 .

[29]  Yutao Li,et al.  Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)‐Ion Batteries , 2017, Advanced science.

[30]  Zhixiong Zhang,et al.  An excellent rechargeable PP14TFSI ionic liquid dual-ion battery. , 2017, Chemical communications.

[31]  Martin Winter,et al.  Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density , 2017, Journal of Solid State Electrochemistry.

[32]  M. Kovalenko,et al.  Efficient Aluminum Chloride–Natural Graphite Battery , 2017 .

[33]  H. Ehrenberg,et al.  Challenges Considering the Degradation of Cell Components in Commercial Lithium-Ion Cells: A Review and Evaluation of Present Systems , 2017, Topics in Current Chemistry.

[34]  Fan Zhang,et al.  A Novel Potassium‐Ion‐Based Dual‐Ion Battery , 2017, Advanced materials.

[35]  Maohua Sheng,et al.  A Novel Tin‐Graphite Dual‐Ion Battery Based on Sodium‐Ion Electrolyte with High Energy Density , 2017 .

[36]  M. Winter,et al.  Anodic Behavior of the Aluminum Current Collector in Imide-Based Electrolytes: Influence of Solvent, Operating Temperature, and Native Oxide-Layer Thickness. , 2017, ChemSusChem.

[37]  M. Winter,et al.  Sodium-Based vs. Lithium-Based Dual-Ion Cells: Electrochemical Study of Anion Intercalation/De-Intercalation into/from Graphite and Metal Plating/Dissolution Behavior , 2017 .

[38]  S. Uhlenbruck,et al.  Suppression of Aluminum Current Collector Dissolution by Protective Ceramic Coatings for Better High-Voltage Battery Performance. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[39]  G. Blomgren The development and future of lithium ion batteries , 2017 .

[40]  M. Winter,et al.  Graphite Recycling from Spent Lithium-Ion Batteries. , 2016, ChemSusChem.

[41]  Fan Zhang,et al.  A Dual‐Ion Battery Constructed with Aluminum Foil Anode and Mesocarbon Microbead Cathode via an Alloying/Intercalation Process in an Ionic Liquid Electrolyte , 2016 .

[42]  M. Winter,et al.  Best Practice: Performance and Cost Evaluation of Lithium Ion Battery Active Materials with Special Emphasis on Energy Efficiency , 2016 .

[43]  T. Ishihara,et al.  Fast Diffusivity of PF6 - Anions in Graphitic Carbon for a Dual-Carbon Rechargeable Battery with Superior Rate Property , 2016 .

[44]  M. Winter,et al.  New insights into the uptake/release of FTFSI− anions into graphite by means of in situ powder X-ray diffraction , 2016 .

[45]  Zelang Jian,et al.  A Hydrocarbon Cathode for Dual-Ion Batteries , 2016 .

[46]  P. Poizot,et al.  A dual–ion battery using diamino–rubicene as anion–inserting positive electrode material , 2016 .

[47]  Stefano Passerini,et al.  An Overview and Future Perspectives of Aluminum Batteries , 2016, Advanced materials.

[48]  M. Winter,et al.  Does Size really Matter? New Insights into the Intercalation Behavior of Anions into a Graphite-Based Positive Electrode for Dual-Ion Batteries , 2016 .

[49]  Hongyu Wang,et al.  Difluoro(oxalato)borate anion intercalation into graphite electrode from ethylene carbonate , 2016 .

[50]  Fan Zhang,et al.  A Novel Aluminum–Graphite Dual‐Ion Battery , 2016 .

[51]  P. Moreau,et al.  Reversible anion intercalation in a layered aromatic amine: a high-voltage host structure for organic batteries , 2016 .

[52]  M. R. Palacín,et al.  Towards a calcium-based rechargeable battery. , 2016, Nature materials.

[53]  Hongyu Wang,et al.  Hexafluorophosphate anion intercalation into graphite electrode from sulfolane/ethylmethyl carbonate solutions , 2016 .

[54]  T. Ishihara,et al.  Dual-carbon battery using high concentration LiPF6 in dimethyl carbonate (DMC) electrolyte , 2016 .

[55]  M. Winter,et al.  Dilatometric Study of the Electrochemical Intercalation of Bis(trifluoromethanesulfonyl) imide and Hexafluorophosphate Anions into Carbon-Based Positive Electrodes , 2015 .

[56]  T. Kranz,et al.  Ion‐Transport Processes in Dual‐Ion Cells Utilizing a Pyr1,4TFSI/LiTFSI Mixture as the Electrolyte , 2015 .

[57]  J. Long,et al.  A Dual-Ion Battery Cathode via Oxidative Insertion of Anions in a Metal-Organic Framework. , 2015, Journal of the American Chemical Society.

[58]  M. Winter,et al.  Thianthrene-functionalized polynorbornenes as high-voltage materials for organic cathode-based dual-ion batteries. , 2015, Chemical communications.

[59]  Hongyu Wang,et al.  Intercalation manners of perchlorate anion into graphite electrode from organic solutions , 2015 .

[60]  Xiulei Ji,et al.  Carbon Electrodes for K-Ion Batteries. , 2015, Journal of the American Chemical Society.

[61]  J. Tübke,et al.  Anion intercalation into graphite from a sodium-containing electrolyte , 2015 .

[62]  Jens Tübke,et al.  Lithium–Sulfur Cells: The Gap between the State‐of‐the‐Art and the Requirements for High Energy Battery Cells , 2015 .

[63]  Bing-Joe Hwang,et al.  An ultrafast rechargeable aluminium-ion battery , 2015, Nature.

[64]  J. Read In-Situ Studies on the Electrochemical Intercalation of Hexafluorophosphate Anion in Graphite with Selective Cointercalation of Solvent , 2015 .

[65]  Peter Lamp,et al.  Future generations of cathode materials: an automotive industry perspective , 2015 .

[66]  M. Yoshio,et al.  Solvation effect on intercalation behaviour of tetrafluoroborate into graphite electrode , 2015 .

[67]  Liping Zhao,et al.  MoS2–C/graphite, an electric energy storage device using Na+-based organic electrolytes , 2015 .

[68]  Claire Villevieille,et al.  Rechargeable Batteries: Grasping for the Limits of Chemistry , 2015 .

[69]  H. Gasteiger,et al.  Review—Electromobility: Batteries or Fuel Cells? , 2015 .

[70]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[71]  M. Winter,et al.  Investigation of PF6(-) and TFSI(-) anion intercalation into graphitized carbon blacks and its influence on high voltage lithium ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[72]  A. Manivannan,et al.  Rechargeable Magnesium Battery: Current Status and Key Challenges for the Future , 2014 .

[73]  M. Winter,et al.  Dual-graphite cells based on the reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte , 2014 .

[74]  M. Winter,et al.  In situ X-ray Diffraction Studies of Cation and Anion Inter­calation into Graphitic Carbons for Electrochemical Energy Storage Applications , 2014 .

[75]  A. Lerf Storylines in intercalation chemistry. , 2014, Dalton transactions.

[76]  M. Yoshio,et al.  Tetramethylammonium difluoro(oxalato)borate dissolved in ethylene/propylene carbonates as electrolytes for electrochemical capacitors , 2014 .

[77]  M. Winter,et al.  Dual-Ion Cells based on the Electrochemical Intercalation of Asymmetric Fluorosulfonyl-(trifluoromethanesulfonyl) imide Anions into Graphite , 2014 .

[78]  M. Winter,et al.  Study of the Electrochemical Behavior of Dual-Graphite Cells Using Ionic Liquid-Based Electrolytes , 2014 .

[79]  M. Winter,et al.  Study of the Electrochemical Intercalation of Different Anions from Non-Aqueous Electrolytes into a Graphite-Based Cathode , 2014 .

[80]  Kang Xu,et al.  Dual-graphite chemistry enabled by a high voltage electrolyte , 2014 .

[81]  K. Tasaki Density Functional Theory Study on Structural and Energetic Characteristics of Graphite Intercalation Compounds , 2014 .

[82]  Robert Kostecki,et al.  Electrochemical activity of carbon blacks in LiPF6-based organic electrolytes , 2013 .

[83]  M. Winter,et al.  X-ray diffraction studies of the electrochemical intercalation of bis(trifluoromethanesulfonyl)imide anions into graphite for dual-ion cells , 2013 .

[84]  M. Winter,et al.  Electrochemical Intercalation of Bis(Trifluoromethanesulfonyl) Imide Anion into Various Graphites for Dual-Ion Cells , 2013 .

[85]  M. Yoshio,et al.  Effects of the Mass Balance Ratio and the Cut-off Voltage on the Performance of a Graphite (KS-6)/TiO2 (Anatase) Energy Storing System , 2013 .

[86]  M. Winter,et al.  Influence of Graphite Characteristics on the Electrochemical Intercalation of Bis(trifluoromethanesulfonyl) imide Anions into a Graphite-Based Cathode , 2013 .

[87]  Martin Winter,et al.  Dual-ion Cells Based on Anion Intercalation into Graphite from Ionic Liquid-Based Electrolytes , 2012 .

[88]  M. Yoshio,et al.  Performance of a graphite (KS-6)/MoO3 energy storing system , 2012 .

[89]  T. Ishihara,et al.  Intercalation of PF – 6 Anion into Nano Pore into Graphene Layer for Improved Capacity of Hybrid Capacitor , 2012 .

[90]  Martin Winter,et al.  Reversible Intercalation of Bis(trifluoromethanesulfonyl)imide Anions from an Ionic Liquid Electrolyte into Graphite for High Performance Dual-Ion Cells , 2012 .

[91]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[92]  R. Dominko,et al.  Lithium bis(fluorosulfonyl)imidePYR 14TFSI ionic liquid electrolyte compatible with graphite , 2011 .

[93]  Young‐Jun Kim,et al.  Prospective materials and applications for Li secondary batteries , 2011 .

[94]  T. Ishihara,et al.  Novel graphite/TiO2 electrochemical cells as a safe electric energy storage system , 2010 .

[95]  David Linden,et al.  Linden's Handbook of Batteries , 2010 .

[96]  P. Novák,et al.  The influence of electrolyte and graphite type on the PF 6 - intercalation behaviour at high potentials , 2009 .

[97]  J. Whitacre,et al.  Reversible Intercalation of Fluoride-Anion Receptor Complexes in Graphite , 2007 .

[98]  H. Matsumoto,et al.  Electrochemical Intercalation of Hexafluorophosphate Anion into Various Carbons for Cathode of Dual-Carbon Rechargeable Battery , 2007 .

[99]  A. Eftekhari Potassium secondary cell based on Prussian blue cathode , 2004 .

[100]  G. L. Henriksen,et al.  Materials cost evaluation report for high-power Li-ion batteries. , 2003 .

[101]  J. Dahn,et al.  Energy and Capacity Projections for Practical Dual‐Graphite Cells , 2000 .

[102]  J. Dahn,et al.  Electrochemical Intercalation of PF 6 into Graphite , 2000 .

[103]  M. Lerner,et al.  Graphite intercalation of bis(trifluoromethanesulfonyl) imide and other anions with perfluoroalkanesulfonyl substituents , 1999 .

[104]  M. Noel,et al.  Electrochemistry of graphite intercalation compounds , 1998 .

[105]  M. Noel,et al.  Effect of solvents on the intercalation/de-intercalation behaviour of monovalent ionic species from non-aqueous solvents on polypropylene-graphite composite electrode , 1997 .

[106]  P. Trulove,et al.  Electrochemistry of room-temperature chloroaluminate molten salts at graphitic and nongraphitic electrodes , 1996 .

[107]  M. Noel,et al.  Electrochemical intercalation of ionic species of tetrabutylammonium perchlorate on graphite electrodes. A potential dual-intercalation battery system , 1995 .

[108]  P. Trulove,et al.  Dual Intercalating Molten Electrolyte Batteries , 1994 .

[109]  H. Fritz,et al.  The Electrochemistry of Black Carbons , 1983 .

[110]  H. Fritz,et al.  Untersuchungen über das Verhalten von Graphitelektroden in nichtwäßrigen Elektrolyten / Investigation of the Behaviour of Graphite Electrodes in Nonaqueous Electrolytes , 1971 .

[111]  L. Sproesser Über Alkalichlorid-Elektrolyse an Kohlenanoden , 1901 .

[112]  C. Schafhaeutl Ueber die Verbindungen des Kohlenstoffes mit Silicium, Eisen und anderen Metallen, welche die verschiedenen Gallungen von Roheisen, Stahl und Schmiedeeisen bilden , 1840 .