Complete genome analysis of Gluconacetobacter xylinus CGMCC 2955 for elucidating bacterial cellulose biosynthesis and metabolic regulation

[1]  S. Jia,et al.  Enhanced bacterial cellulose production by Gluconacetobacter xylinus via expression of Vitreoscilla hemoglobin and oxygen tension regulation , 2017, Applied Microbiology and Biotechnology.

[2]  Jiazhi Yang,et al.  Complete genome sequence of the cellulose-producing strain Komagataeibacter nataicola RZS01 , 2017, Scientific Reports.

[3]  Amparo López-Rubio,et al.  Improving the barrier properties of thermoplastic corn starch-based films containing bacterial cellulose nanowhiskers by means of PHA electrospun coatings of interest in food packaging , 2016 .

[4]  Wai-Leung Ng,et al.  Specificity and complexity in bacterial quorum-sensing systems , 2016, FEMS microbiology reviews.

[5]  Tom Ellis,et al.  Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain , 2016, Proceedings of the National Academy of Sciences.

[6]  Micah J Florea,et al.  Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582 , 2016, Scientific Reports.

[7]  S. Jia,et al.  Metabolic Investigation in Gluconacetobacter xylinus and Its Bacterial Cellulose Production under a Direct Current Electric Field , 2016, Front. Microbiol..

[8]  Tingting Ma,et al.  Bacterial cellulose synthesis mechanism of facultative anaerobe Enterobacter sp. FY-07 , 2016, Scientific Reports.

[9]  S. Jia,et al.  Improvement of antimicrobial activity of graphene oxide/bacterial cellulose nanocomposites through the electrostatic modification. , 2016, Carbohydrate polymers.

[10]  S. Jia,et al.  Metabolomic profiling coupled with metabolic network reveals differences in Gluconacetobacter xylinus from static and agitated cultures , 2015 .

[11]  Michael Y. Galperin,et al.  Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. , 2015, Trends in microbiology.

[12]  J. M. Dow,et al.  The DSF Family of Cell–Cell Signals: An Expanding Class of Bacterial Virulence Regulators , 2015, PLoS pathogens.

[13]  J. Sugiyama,et al.  Functional reconstitution of cellulose synthase in Escherichia coli. , 2014, Biomacromolecules.

[14]  S. Bielecki,et al.  Complete genome sequence of Gluconacetobacter xylinus E25 strain--valuable and effective producer of bacterial nanocellulose. , 2014, Journal of biotechnology.

[15]  Jochen Zimmer,et al.  Mechanism of activation of bacterial cellulose synthase by cyclic-di-GMP , 2014, Nature Structural &Molecular Biology.

[16]  J. Collins,et al.  A brief history of synthetic biology , 2014, Nature Reviews Microbiology.

[17]  Huaping Wang,et al.  Functionalized bacterial cellulose derivatives and nanocomposites. , 2014, Carbohydrate polymers.

[18]  Douglas B. Weibel,et al.  Bacterial Cellulose as a Substrate for Microbial Cell Culture , 2014, Applied and Environmental Microbiology.

[19]  Vincent Bulone,et al.  BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis , 2013, Proceedings of the National Academy of Sciences.

[20]  L. De Vuyst,et al.  Complete genome sequence and comparative analysis of Acetobacter pasteurianus 386B, a strain well-adapted to the cocoa bean fermentation ecosystem , 2013, BMC Genomics.

[21]  S. Jia,et al.  Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production , 2013, Applied Microbiology and Biotechnology.

[22]  J. Sugiyama,et al.  Formation of Highly Twisted Ribbons in a Carboxymethylcellulase Gene-Disrupted Strain of a Cellulose-Producing Bacterium , 2012, Journal of bacteriology.

[23]  K. Jung,et al.  Single cell analysis of Vibrio harveyi uncovers functional heterogeneity in response to quorum sensing signals , 2012, BMC Microbiology.

[24]  W. Ping,et al.  Improvement of bacterial cellulose production by manipulating the metabolic pathways in which ethanol and sodium citrate involved , 2012, Applied Microbiology and Biotechnology.

[25]  H. Delatte,et al.  Evidence of diversity and recombination in Arsenophonus symbionts of the Bemisia tabaci species complex , 2012, BMC Microbiology.

[26]  A. Wright,et al.  Molecular analysis of methanogenic archaea in the forestomach of the alpaca (Vicugna pacos) , 2012, BMC Microbiology.

[27]  A. Hosoyama,et al.  Complete Genome Sequence of NBRC 3288, a Unique Cellulose-Nonproducing Strain of Gluconacetobacter xylinus Isolated from Vinegar , 2011, Journal of bacteriology.

[28]  Weihua Tang,et al.  Characterization of bacteriostatic sausage casing: A composite of bacterial cellulose embedded with ɛ-polylysine , 2010 .

[29]  I. Tanaka,et al.  Structure of bacterial cellulose synthase subunit D octamer with four inner passageways , 2019 .

[30]  H. Hilbi,et al.  Bacterial gene regulation by alpha-hydroxyketone signaling. , 2010, Trends in microbiology.

[31]  M. Tien,et al.  Genome Sequence of a Cellulose-Producing Bacterium, Gluconacetobacter hansenii ATCC 23769 , 2010, Journal of bacteriology.

[32]  H. Son,et al.  Influence of glycerol on production and structural-physical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks. , 2010, Bioresource technology.

[33]  B. Bassler,et al.  Bacterial quorum-sensing network architectures. , 2009, Annual review of genetics.

[34]  E. Joe,et al.  Differential SUMOylation of LXRalpha and LXRbeta mediates transrepression of STAT1 inflammatory signaling in IFN-gamma-stimulated brain astrocytes. , 2009, Molecular cell.

[35]  S. Horinouchi,et al.  Identification and characterization of target genes of the GinI/GinR quorum-sensing system in Gluconacetobacter intermedius. , 2009, Microbiology.

[36]  M. Gidley,et al.  Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524 , 2009, Journal of applied microbiology.

[37]  Bonnie L Bassler,et al.  A quorum-sensing antagonist targets both membrane-bound and cytoplasmic receptors and controls bacterial pathogenicity. , 2009, Molecular cell.

[38]  Haluk Beyenal,et al.  Quorum sensing: a new biofouling control paradigm in a membrane bioreactor for advanced wastewater treatment. , 2009, Environmental science & technology.

[39]  Kaiyan Qiu,et al.  An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770 , 2008 .

[40]  S. Horinouchi,et al.  Control of Acetic Acid Fermentation by Quorum Sensing via N-Acylhomoserine Lactones in Gluconacetobacter intermedius , 2008, Journal of bacteriology.

[41]  B. Bassler,et al.  Quorum sensing: cell-to-cell communication in bacteria. , 2005, Annual review of cell and developmental biology.

[42]  W. F. Fricke,et al.  Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans , 2005, Nature Biotechnology.

[43]  Bonnie L. Bassler,et al.  Parallel Quorum Sensing Systems Converge to Regulate Virulence in Vibrio cholerae , 2002, Cell.

[44]  Y. Pyun,et al.  Evidence that a beta-1,4-endoglucanase secreted by Acetobacter xylinum plays an essential role for the formation of cellulose fiber. , 1998, Bioscience, biotechnology, and biochemistry.

[45]  E. Greenberg,et al.  Self perception in bacteria: quorum sensing with acylated homoserine lactones. , 1998, Current opinion in microbiology.

[46]  B Henrissat,et al.  Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[47]  K. Rinehart,et al.  Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[48]  E. Greenberg,et al.  Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[49]  B. Wanner,et al.  Involvement of phosphotransacetylase, acetate kinase, and acetyl phosphate synthesis in control of the phosphate regulon in Escherichia coli , 1992, Journal of bacteriology.

[50]  R Mayer,et al.  Cellulose biosynthesis and function in bacteria. , 1991, Microbiological reviews.

[51]  D. Amikam,et al.  Genetic organization of the cellulose synthase operon in Acetobacter xylinum. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[52]  W. S. Williams,et al.  Alternative Environmental Roles for Cellulose Produced by Acetobacter xylinum , 1989, Applied and environmental microbiology.

[53]  D. Michaeli,et al.  Control of cellulose synthesis Acetobacter xylinum. A unique guanyl oligonucleotide is the immediate activator of the cellulose synthase , 1986 .

[54]  R. Poole,et al.  The respiratory chains of Escherichia coli. , 1984, Microbiological reviews.

[55]  M. Silverman,et al.  Identification of genes and gene products necessary for bacterial bioluminescence. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[56]  F. Daldal Molecular cloning of the gene for phosphofructokinase-2 of Escherichia coli and the nature of a mutation, pfkB1, causing a high level of the enzyme. , 1983, Journal of molecular biology.

[57]  G L Kenyon,et al.  Structural identification of autoinducer of Photobacterium fischeri luciferase. , 1981, Biochemistry.

[58]  K. Nealson,et al.  Bacterial bioluminescence: its control and ecological significance , 1979, Microbiological reviews.

[59]  H. Buc,et al.  Kinetics of the allosteric interactions of phosphofructokinase from Escherichia coli. , 1968, Journal of molecular biology.

[60]  M. Schramm,et al.  Role of Hexose Phosphate in Synthesis of Cellulose by Acetobacter Xylinum , 1957, Nature.

[61]  Athanasios Mantalaris,et al.  More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. , 2014, Macromolecular bioscience.

[62]  R. Brown,et al.  Microbial cellulose--the natural power to heal wounds. , 2006, Biomaterials.

[63]  E. Greenberg,et al.  Sociomicrobiology: the connections between quorum sensing and biofilms. , 2005, Trends in microbiology.

[64]  Jay Shah,et al.  Towards electronic paper displays made from microbial cellulose , 2004, Applied Microbiology and Biotechnology.

[65]  Shin Kawano,et al.  Cloning of cellulose synthesis related genes from Acetobacter xylinum ATCC23769 and ATCC53582: comparison of cellulose synthetic ability between strains. , 2002, DNA research : an international journal for rapid publication of reports on genes and genomes.

[66]  Masatoshi Iguchi,et al.  Bacterial cellulose—a masterpiece of nature's arts , 2000 .

[67]  M. Ikeuchi,et al.  Cloning of cellulose synthase genes from Acetobacter xylinum JCM 7664: implication of a novel set of cellulose synthase genes. , 1999, DNA research : an international journal for rapid publication of reports on genes and genomes.

[68]  Takaaki Naritomi,et al.  Regular paperEffect of ethanol on bacterial cellulose production from fructose in continuous culture , 1998 .

[69]  Takaaki Naritomi,et al.  Effect of lactate on bacterial cellulose production from fructose in continuous culture , 1998 .