Olfactory Reciprocal Synapses: Dendritic Signaling in the CNS

[1]  C. G. Phillips,et al.  Responses of mitral cells to stimulation of the lateral olfactory tract in the rabbit , 1963, The Journal of physiology.

[2]  G M Shepherd,et al.  Dendrodendritic synaptic pathway for inhibition in the olfactory bulb. , 1966, Experimental neurology.

[3]  G. Shepherd,et al.  Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. , 1968, Journal of neurophysiology.

[4]  J. Dowling,et al.  Synaptic organization of the frog retina: an electron microscopic analysis comparing the retinas of frogs and primates , 1968, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[5]  R. Nicoll,et al.  Inhibitory mechanisms in the rabbit olfactory bulb: dendrodendritic mechanisms. , 1969, Brain research.

[6]  T. Powell,et al.  The synaptology of the granule cells of the olfactory bulb. , 1970, Journal of cell science.

[7]  T. Powell,et al.  The morphology of the granule cells of the olfactory bulb. , 1970, Journal of cell science.

[8]  R. Nicoll,et al.  Dendrodendritic inhibition: demonstration with intracellular recording. , 1980, Science.

[9]  J. Glowinski,et al.  Dendritic release of dopamine in the substantia nigra , 1981, Nature.

[10]  G. Shepherd,et al.  GABAergic mechanisms of dendrodendritic synapses in isolated turtle olfactory bulb. , 1981, Journal of neurophysiology.

[11]  R. Nicoll,et al.  Noradrenergic modulation of dendrodendritic inhibition in the olfactory bulb , 1982, Nature.

[12]  R. Nicoll,et al.  An intracellular analysis of dendrodendritic inhibition in the turtle in vitro olfactory bulb , 1982, The Journal of physiology.

[13]  Stephen G. Waxman Structure and Function in Excitable Cells, Donald C. Chang, Ichiji Tasaki, William J. Adelman Jr, H. Richard Leuchtag (Eds.). Plenum Press (1983), xv + 499, ISBN: 0 306 41338 8 , 1984 .

[14]  R. Llinás,et al.  Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. , 1985, Biophysical journal.

[15]  L. Iversen,et al.  Excitatory amino acids in the brain - focus on NMDA receptors , 1987, Trends in Neurosciences.

[16]  Gordon M. Shepherd,et al.  The Olfactory Bulb , 1988 .

[17]  G. Collingridge,et al.  Excitatory amino acid receptors in the vertebrate central nervous system. , 1989, Pharmacological reviews.

[18]  William A. Catterall,et al.  Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons , 1990, Nature.

[19]  G. Westbrook,et al.  Excitatory synaptic transmission in cultures of rat olfactory bulb. , 1990, Journal of neurophysiology.

[20]  G. Westbrook,et al.  Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents , 1990, Nature.

[21]  C. Greer,et al.  Local information processing in dendritic trees: subsets of spines in granule cells of the mammalian olfactory bulb , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  M. Charlton,et al.  Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  J. Hell,et al.  Biochemical properties and subcellular distribution of an N-type calcium hannel α1 subunit , 1992, Neuron.

[24]  J S Kauer,et al.  GABAA and glutamate receptor involvement in dendrodendritic synaptic interactions from salamander olfactory bulb. , 1993, The Journal of physiology.

[25]  A. Momiyama,et al.  Different types of calcium channels mediate central synaptic transmission , 1993, Nature.

[26]  C. Koch,et al.  The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  P. Schwartzkroin,et al.  Neural mechanisms. , 1994, Science.

[28]  J S Kauer,et al.  GABAergic and glutamatergic synaptic input to identified granule cells in salamander olfactory bulb. , 1994, The Journal of physiology.

[29]  H. V. Gersdorff,et al.  Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals , 1994, Nature.

[30]  Marc G. Weisskopf,et al.  The role of Ca2+ channels in hippocampal mossy fiber synaptic transmission and long-term potentiation , 1994, Neuron.

[31]  M. Charlton,et al.  Homosynaptic facilitation of transmitter release in crayfish is not affected by mobile calcium chelators: implications for the residual ionized calcium hypothesis from electrophysiological and computational analyses. , 1994, Journal of neurophysiology.

[32]  R. Tsien,et al.  Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. , 1994, Science.

[33]  W. Regehr,et al.  Calcium control of transmitter release at a cerebellar synapse , 1995, Neuron.

[34]  S. Nakanishi,et al.  Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[35]  D. Johnston,et al.  Characterization of single voltage‐gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. , 1995, The Journal of physiology.

[36]  J. Luebke,et al.  Exocytotic Ca2+ channels in mammalian central neurons , 1995, Trends in Neurosciences.

[37]  C. Chavkin,et al.  L-type calcium channels mediate dynorphin neuropeptide release from dendrites but not axons of hippocampal granule cells , 1995, Neuron.

[38]  B. Walmsley,et al.  Receptors underlying excitatory synaptic transmission in slices of the rat anteroventral cochlear nucleus. , 1995, Journal of neurophysiology.

[39]  D. Johnston,et al.  Multiple Channel Types Contribute to the Low-Voltage-Activated Calcium Current in Hippocampal CA3 Pyramidal Neurons , 1996, The Journal of Neuroscience.

[40]  D. Johnston,et al.  Active properties of neuronal dendrites. , 1996, Annual review of neuroscience.

[41]  Paul Antoine Salin,et al.  Distinct short-term plasticity at two excitatory synapses in the hippocampus. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[42]  D W Tank,et al.  Direct Measurement of Coupling Between Dendritic Spines and Shafts , 1996, Science.

[43]  B. Sakmann,et al.  Calcium influx and transmitter release in a fast CNS synapse , 1996, Nature.

[44]  B. Sakmann,et al.  Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. , 1996, Biophysical journal.

[45]  P. Brennan,et al.  NEURAL MECHANISMS OF MAMMALIAN OLFACTORY LEARNING , 1997, Progress in Neurobiology.

[46]  J Bischofberger,et al.  Action potential propagation into the presynaptic dendrites of rat mitral cells , 1997, The Journal of physiology.

[47]  N. Spruston,et al.  Action potential initiation and backpropagation in neurons of the mammalian CNS , 1997, Trends in Neurosciences.

[48]  B. Gähwiler,et al.  Either N- or P-type Calcium Channels Mediate GABA Release at Distinct Hippocampal Inhibitory Synapses , 1997, Neuron.

[49]  G M Shepherd,et al.  Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells. , 1997, Science.

[50]  S. Hestrin,et al.  Properties of GABAA Receptors Underlying Inhibitory Synaptic Currents in Neocortical Pyramidal Neurons , 1997, The Journal of Neuroscience.

[51]  R. Tsien,et al.  Contrasting biophysical and pharmacological properties of T-type and R-type calcium channels , 1997, Neuropharmacology.

[52]  M. T. Shipley,et al.  Glomerular synaptic responses to olfactory nerve input in rat olfactory bulb slices , 1997, Neuroscience.