Convergence Estimates for Gupta-Srivastava Operators

The Grüss-Voronovskaya-type approximation results for the modified Gupta-Srivastava operators are considered. Moreover, the magnitude of differences of two linear positive operators defined on an unbounded interval has been estimated. Quantitative type results are established as we initially obtain the moments of generalized discrete operators and then estimate the difference of these operators with the Gupta-Srivastava operators.

[1]  Vijay Gupta,et al.  Improved approximation on Durrmeyer-type operators , 2019 .

[2]  A. Aral,et al.  On differences of linear positive operators , 2019 .

[3]  N. Deo,et al.  Approximation by genuine Gupta–Srivastava operators , 2019, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[4]  N. Ispir On Modified Baskakov Operators on Weighted Spaces , 2001 .

[5]  Approximation of Durrmeyer Type Operators Depending on Certain Parameters , 2017 .

[6]  N. Ispir,et al.  ON THE BEZIER VARIANT OF SRIVASTAVA-GUPTA OPERATORS , 2005 .

[7]  Vijay Gupta Differences of Operators of Lupaş Type , 2018, Constructive Mathematical Analysis.

[8]  Rani Yadav Approximation by modified Srivastava-Gupta operators , 2014, Appl. Math. Comput..

[9]  P. N. Agrawal,et al.  Convergence in simultaneous approximation for Srivastava-Gupta operators , 2012 .

[10]  Hari M. Srivastava,et al.  A certain family of summation-integral type operators , 2003 .

[11]  A. Acu,et al.  Certain approximation properties of Srivastava-Gupta operators , 2018 .

[12]  Localization results for generalized Baskakov/Mastroianni and composite operators , 2011 .

[13]  H. Srivastava,et al.  A General Family of the Srivastava-Gupta Operators Preserving Linear Functions , 2018, European Journal of Pure and Applied Mathematics.

[14]  L. Mishra,et al.  Simultaneous Approximation for Generalized Srivastava-Gupta Operators , 2015 .

[15]  Neha Malik,et al.  Some approximation properties for generalized Srivastava- Gupta operators , 2015, Appl. Math. Comput..

[16]  Naokant Deo Faster rate of convergence on Srivastava-Gupta operators , 2012, Appl. Math. Comput..

[17]  Vijay Gupta,et al.  Certain new classes of Durrmeyer type operators , 2013, Appl. Math. Comput..