Engineering Nanomaterial Surfaces for Biomedical Applications

Nanomaterials, possessing unique physical and chemical properties, have attracted much interest and generated wide varieties of applications. Recent investigations of functionalized nanomaterials have expanded into the biological area, providing a versatile platform in biomedical applications such as biomolecular sensing, biological imaging, drug delivery and disease therapy. Bio-functions and bio-compatibility of nanomaterials are realized by introducing synthetic ligands or natural biomolecules onto nanomaterials, and combining ligand-receptor biological interactions with intrinsic nanomaterial properties. Common strategies of engineering nanomaterial surfaces involve physisorption or chemisorption of desired ligands. We developed a photochemically initiated surface coupling chemistry, bringing versatility and simplicity to nanomaterial functionalization. The method was applied to attach underivatized carbohydrates efficiently on gold and iron oxide nanoparticles, and the resulting glyconanoparticles were successfully used as a sensitive biosensing system probing specific interactions between carbohydrates and proteins as well as bacteria.

[1]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[2]  Younan Xia,et al.  Bionanotechnology: Enabling Biomedical Research with Nanomaterials , 2007 .

[3]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[4]  Gustaaf Borghs,et al.  Silane Ligand Exchange to Make Hydrophobic Superparamagnetic Nanoparticles Water-Dispersible , 2007 .

[5]  George M. Whitesides,et al.  Molecular Conformation in Oligo(ethylene glycol)-Terminated Self-Assembled Monolayers on Gold and Silver Surfaces Determines Their Ability To Resist Protein Adsorption , 1998 .

[6]  Q. Pankhurst,et al.  Applications of magnetic nanoparticles in biomedicine , 2003 .

[7]  Yi Lin,et al.  Functionalized carbon nanotubes: properties and applications. , 2002, Accounts of chemical research.

[8]  Ya‐Ping Sun,et al.  Advances in Bioapplications of Carbon Nanotubes , 2009 .

[9]  Ralph Weissleder,et al.  Magnetic relaxation switches capable of sensing molecular interactions , 2002, Nature Biotechnology.

[10]  J. M. Harris,et al.  Poly(Ethylene Glycol) Chemistry , 1992 .

[11]  Yan Alexander Wang,et al.  Chemistry of Single-Walled Carbon Nanotubes , 2009 .

[12]  James F. Rusling,et al.  Carbon Nanotubes for Electronic and Electrochemical Detection of Biomolecules , 2007, Advanced materials.

[13]  Milan Mrksich,et al.  Probing Protein–Carbohydrate Interactions with Microarrays of Synthetic Oligosaccharides , 2004, Chembiochem : a European journal of chemical biology.

[14]  A. Ting,et al.  An engineered aryl azide ligase for site-specific mapping of protein-protein interactions through photo-cross-linking. , 2008, Angewandte Chemie.

[15]  Qian Wang,et al.  An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. , 2004, Journal of the American Chemical Society.

[16]  C. Koch,et al.  Nanostructured Materials: Processing Properties, and Potential Applications , 2002 .

[17]  Mingdi Yan,et al.  A versatile method for grafting polymers on nanoparticles. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[18]  I. Shin,et al.  Construction of carbohydrate microarrays by using one-step, direct immobilizations of diverse unmodified glycans on solid surfaces. , 2009, Bioconjugate chemistry.

[19]  Mingdi Yan Photochemically Initiated Single Polymer Immobilization , 2007 .

[20]  Bing Xu,et al.  Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. , 2004, Journal of the American Chemical Society.

[21]  U. Schubert,et al.  Surface Modification and Functionalization of Metal and Metal Oxide Nanoparticles by Organic Ligands , 2008 .

[22]  Itamar Willner,et al.  Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[23]  Ralph Weissleder,et al.  Magnetic Nanosensors for the Detection of Oligonucleotide Sequences. , 2001, Angewandte Chemie.

[24]  Ralph Weissleder,et al.  Magnetic relaxation switch immunosensors detect enantiomeric impurities. , 2004, Angewandte Chemie.

[25]  Petras Juzenas,et al.  Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. , 2008, Advanced drug delivery reviews.

[26]  Donghoon Lee,et al.  Optical and MRI multifunctional nanoprobe for targeting gliomas. , 2005, Nano letters.

[27]  R. Costo,et al.  Progress in the preparation of magnetic nanoparticles for applications in biomedicine , 2003, Magnetic Nanoparticles in Biosensing and Medicine.

[28]  E. Vivés,et al.  Tat peptide-mediated cellular delivery: back to basics. , 2005, Advanced drug delivery reviews.

[29]  J. Storhoff,et al.  Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. , 1997, Science.

[30]  Kemin Wang,et al.  Collection of trace amounts of DNA/mRNA molecules using genomagnetic nanocapturers. , 2003, Analytical chemistry.

[31]  A. Lu,et al.  Magnetic nanoparticles: synthesis, protection, functionalization, and application. , 2007, Angewandte Chemie.

[32]  P Wust,et al.  Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique , 2005, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[33]  M. Grunze,et al.  Solvation of Oligo(ethylene glycol)-Terminated Self-Assembled Monolayers Studied by Vibrational Sum Frequency Spectroscopy , 2000 .

[34]  N. Miyata,et al.  Immunomagnetic separation of scum-forming bacteria using polyclonal antibody that recognizes mycolic acids. , 2002, Journal of microbiological methods.

[35]  Hiroyuki Honda,et al.  Medical application of functionalized magnetic nanoparticles. , 2005, Journal of bioscience and bioengineering.

[36]  Ralph Weissleder,et al.  Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. , 2003, Journal of the American Chemical Society.

[37]  A. Star,et al.  Carbon Nanotube Field‐Effect‐Transistor‐Based Biosensors , 2007 .

[38]  M. Grunze,et al.  The interaction of oligo(ethylene oxide) with water: a quantum mechanical study , 2000 .

[39]  K. Bhadriraju,et al.  Hepatocyte adhesion, growth and differentiated function on RGD-containing proteins. , 2000, Biomaterials.

[40]  Ralph Weissleder,et al.  Magnetic sensors for protease assays. , 2003, Angewandte Chemie.

[41]  J. Turnbull,et al.  Fabrication of carbohydrate microarrays on gold surfaces: direct attachment of nonderivatized oligosaccharides to hydrazide-modified self-assembled monolayers. , 2006, Analytical chemistry.

[42]  I. Shin,et al.  Fabrication of chemical microarrays by efficient immobilization of hydrazide-linked substances on epoxide-coated glass surfaces. , 2005, Angewandte Chemie.

[43]  Chad A. Mirkin,et al.  Nanostructures in Biodiagnostics , 2005 .

[44]  P. Wust,et al.  Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles , 1999 .

[45]  이재현 Chemical design of nanoparticle probes for high-performance magnetic resonance imaging , 2008 .

[46]  H. Byon,et al.  LABEL-FREE BIOMOLECULAR DETECTION USING CARBON NANOTUBE FIELD EFFECT TRANSISTORS , 2008 .

[47]  Ya‐Ping Sun,et al.  Unique aggregation of anthrax (Bacillus anthracis) spores by sugar-coated single-walled carbon nanotubes. , 2006, Journal of the American Chemical Society.

[48]  Chia-Chun Chen,et al.  Quantitative analysis of multivalent interactions of carbohydrate-encapsulated gold nanoparticles with concanavalin A. , 2003, Chemical communications.

[49]  Ann Walden,et al.  Photogenerated Carbohydrate Microarrays , 2007, Chembiochem : a European journal of chemical biology.

[50]  Shimon Weiss,et al.  Tracking bio‐molecules in live cells using quantum dots , 2008, Journal of biophotonics.

[51]  Jinkyu Lee,et al.  Multifunctional nanoparticles possessing a "magnetic motor effect" for drug or gene delivery. , 2005, Angewandte Chemie.

[52]  Mingdi Yan,et al.  Photoderivatized polymer thin films at quartz crystal microbalance surfaces: sensors for carbohydrate-protein interactions. , 2007, Analytical chemistry.

[53]  Hiroyuki Honda,et al.  Heat-inducible TNF-α gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy , 2001, Cancer Gene Therapy.

[54]  Robert Wilson The use of gold nanoparticles in diagnostics and detection. , 2008, Chemical Society reviews.

[55]  Wei Wang,et al.  Advances toward bioapplications of carbon nanotubes , 2004 .

[56]  Jennifer A. Dahl,et al.  Toward Greener Nanosynthesis , 2007 .

[57]  Jeremiah A. Johnson,et al.  Toward the Syntheses of Universal Ligands for Metal Oxide Surfaces: Controlling Surface Functionality through Click Chemistry , 2006 .

[58]  Hui Mao,et al.  Metallic iron nanoparticles for MRI contrast enhancement and local hyperthermia. , 2008, Small.

[59]  Chi‐Huey Wong,et al.  Quantitative analysis of carbohydrate-protein interactions using glycan microarrays: determination of surface and solution dissociation constants. , 2007, Journal of the American Chemical Society.

[60]  P. Schurtenberger,et al.  Photoinitiated coupling of unmodified monosaccharides to iron oxide nanoparticles for sensing proteins and bacteria. , 2009, Bioconjugate chemistry.

[61]  Valérie Cabuil,et al.  Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. , 2005, Journal of the American Chemical Society.

[62]  J. Dobson Magnetic nanoparticles for drug delivery , 2006 .

[63]  Igor L. Medintz,et al.  Multiplexed toxin analysis using four colors of quantum dot fluororeagents. , 2004, Analytical chemistry.

[64]  Mingdi Yan,et al.  Covalent immobilization of polypropylene thin films , 2005 .

[65]  Ajay Kumar Gupta,et al.  Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. , 2005, Biomaterials.

[66]  Ajay Kumar Gupta,et al.  Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. , 2007, Nanomedicine.

[67]  H. Menzel,et al.  Using benzophenone-functionalized phosphonic acid to attach thin polymer films to titanium surfaces. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[68]  Injae Shin,et al.  Carbohydrate microarrays for assaying galactosyltransferase activity. , 2007, Organic letters.

[69]  Frank W. Wise,et al.  Lead Salt Quantum Dots: The Limit of Strong Quantum Confinement , 2001 .

[70]  M. E. Williams,et al.  Controlling transport and chemical functionality of magnetic nanoparticles. , 2008, Accounts of chemical research.

[71]  F. Macaluso,et al.  Erratum: Observation of unique cross-linked lattices between multiantennary carbohydrates and soybean lectin. Presence of pseudo-2-fold axes of symmetry in complex type carbohydrates (Biochemistry (May 10, 1994) 33:18 (5614-5622)) , 1994 .

[72]  J. Cheon,et al.  Nanoscaling Laws of Magnetic Nanoparticles and Their Applicabilities in Biomedical Sciences , 2008 .

[73]  Chi‐Huey Wong,et al.  Synthesis of sugar arrays in microtiter plate. , 2002, Journal of the American Chemical Society.

[74]  M. Prato,et al.  Chemistry of carbon nanotubes. , 2006, Chemical reviews.

[75]  C. Robic,et al.  Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. , 2008, Chemical reviews.

[76]  P. Seeberger,et al.  Carbohydrate microarrays as tools in HIV glycobiology. , 2007, Current pharmaceutical design.

[77]  H. Otsuka,et al.  Polystyrene- and poly(3-vinylpyridine)-grafted magnetite nanoparticles prepared through surface-initiated nitroxide-mediated radical polymerization , 2004 .

[78]  B. Bonnemain,et al.  Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications. A review. , 1998, Journal of drug targeting.

[79]  Mingdi Yan,et al.  Surface and interface control on photochemically initiated immobilization. , 2006, Journal of the American Chemical Society.

[80]  Gary Friedman,et al.  Magnetic targeting for site-specific drug delivery: applications and clinical potential. , 2009, Expert opinion on drug delivery.

[81]  A. Ulman,et al.  Self-Assembled Monolayers of Alkanesulfonic and -phosphonic Acids on Amorphous Iron Oxide Nanoparticles , 1999 .

[82]  T. Dam,et al.  Thermodynamic studies of lectin-carbohydrate interactions by isothermal titration calorimetry. , 2002, Chemical reviews.

[83]  S. Nishimura,et al.  Magnetic nanoparticles for improving cell invasion in tissue engineering. , 2008, Journal of biomedical materials research. Part A.

[84]  Weidong Yang,et al.  Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods , 2001, Science.

[85]  C. Rao,et al.  Optimization of ferrofluids and protocols for the enrichment of breast tumor cells in blood , 2001 .

[86]  Louis E. Brus,et al.  Luminescence Photophysics in Semiconductor Nanocrystals , 1999 .

[87]  Christian Melander,et al.  Inhibition of HIV fusion with multivalent gold nanoparticles. , 2008, Journal of the American Chemical Society.

[88]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[89]  Victor S-Y Lin,et al.  Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. , 2005, Angewandte Chemie.

[90]  Xue-Long Sun,et al.  Carbohydrate and protein immobilization onto solid surfaces by sequential Diels-Alder and azide-alkyne cycloadditions. , 2006, Bioconjugate chemistry.

[91]  Cyndee Gruden,et al.  Magnetic glyco-nanoparticles: a unique tool for rapid pathogen detection, decontamination, and strain differentiation. , 2007, Journal of the American Chemical Society.

[92]  R Weissleder,et al.  High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. , 1999, Bioconjugate chemistry.

[93]  P. Mutin,et al.  Hybrid materials from organophosphorus coupling molecules , 2005 .

[94]  V. Cabuil,et al.  Functionalization of γ-Fe2O3 nanoparticles through the grafting of an organophosphorous ligand , 2008 .

[95]  Alexander Star,et al.  Electronic Detection of Specific Protein Binding Using Nanotube FET Devices , 2003 .

[96]  A Paul Alivisatos,et al.  Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays. , 2003, Analytical chemistry.

[97]  D. Leslie-Pelecky,et al.  Biomedical Applications of Nanotechnology , 2007 .

[98]  Mingdi Yan,et al.  A general approach to the covalent immobilization of single polymers. , 2006, Angewandte Chemie.

[99]  Catherine C. Berry,et al.  Functionalisation of magnetic nanoparticles for applications in biomedicine : Biomedical applications of magnetic nanoparticles , 2003 .

[100]  Rongrong Liu,et al.  A simple and specific assay for real-time colorimetric visualization of beta-lactamase activity by using gold nanoparticles. , 2007, Angewandte Chemie.

[101]  Taeghwan Hyeon,et al.  Versatile PEG-derivatized phosphine oxide ligands for water-dispersible metal oxide nanocrystals. , 2007, Chemical communications.

[102]  Raz Jelinek,et al.  Carbohydrate biosensors. , 2004, Chemical reviews.

[103]  Warren C. W. Chan,et al.  Quantum Dots in Biological and Biomedical Research: Recent Progress and Present Challenges , 2006 .

[104]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[105]  B. Xia,et al.  Versatile fluorescent derivatization of glycans for glycomic analysis , 2005, Nature Methods.

[106]  Mingdi Yan,et al.  Covalent Immobilization of Ultrathin Polymer Films by Thermal Activation of Perfluorophenyl Azide , 2004 .

[107]  Ming Yan,et al.  A Simple Method for the Attachment of Polymer Films on Solid Substrates , 2003 .

[108]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[109]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.