Study of the properties of nanocomposites based on thermally-treated-polyacrylonitrile (review)

Organic semiconductors and novel carbon forms (fullerene, carbon nanotubes, carbon foam, graphene) promote synthesis of carbon nanocomposites with modified properties based on thermally treated polyacrylonitrile (TPAN) that comprises curved (spherical, ring-like, and tube-like) carbon planes. Here we present a review of the studies regarding the properties of TPAN-based nanocomposites. The features of the IR irradiation procedure with a synergetic effect and the mechanism of polyacrylonitrile (PAN) transformation into carbon nanocrystalline material (CNM) have been analyzed. The developed method is promising for the synthesis of luminescent carbon nanostructures and biocompatible carbon nanostructures with high sensitivity to pH medium; metal-polymer nanocomposites (Ag/PAN, Cu/PAN, Fe3O4/TPAN), which can be used in electronics, catalysis, and in water purification from heavy metals, etc. The results obtained may be used to synthesize TPAN-based novel nanocomposites with modified properties.

[1]  Mohammad Javed Ansari,et al.  Synthesis and Stability of Magnetic Nanoparticles , 2022, BioNanoScience.

[2]  R. Patakfalvi,et al.  Biogenic synthesis of platinum nanoparticles , 2022, Chemical Papers.

[3]  V. V. Kozlov,et al.  Исследование свойств стабилизированного термообработанного полиакрилонитрила на воздухе , 2021 .

[4]  M. I. Shcherbakov,et al.  Synthesis of Nanoparticles by Spark Discharge as a Facile and Versatile Technique of Preparing Highly Conductive Pt Nano-Ink for Printed Electronics , 2021, Nanomaterials.

[5]  A. Navrotsky Nanoparticles , 2020, Managing Human and Social Systems.

[6]  Wei Liu,et al.  Formation Mechanism of Skin-Core Chemical Structure within Stabilized Polyacrylonitrile Monofilaments , 2019, Nanoscale Research Letters.

[7]  B. Pukánszky,et al.  The mechanism of thermal stabilization of polyacrylonitrile , 2019, Thermochimica Acta.

[8]  Michael K Danquah,et al.  Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations , 2018, Beilstein journal of nanotechnology.

[9]  Xudong Zhao,et al.  Influence of heating procedures on the surface structure of stabilized polyacrylonitrile fibers , 2018 .

[10]  R. Mahar,et al.  Removal of lead from aqueous solution using polyacrylonitrile/magnetite nanofibers , 2018, Environmental Science and Pollution Research.

[11]  R. V. Ghorpade,et al.  Effect of controlled tacticity of polyacrylonitrile (co)polymers on their thermal oxidative stabilization behaviors and the properties of resulting carbon films , 2017 .

[12]  F. B. Ayed,et al.  Mechanical optimization of the composite biomaterial based on the tricalcium phosphate, titania and magnesium fluoride. , 2016, Journal of the mechanical behavior of biomedical materials.

[13]  S. Ozcan,et al.  High performance carbon fibers from very high molecular weight polyacrylonitrile precursors , 2016 .

[14]  M. Naebe,et al.  Investigation of progress of reactions and evolution of radial heterogeneity in the initial stage of thermal stabilization of PAN precursor fibres , 2016 .

[15]  Л. В. Кожитов,et al.  СТРУКТУРНЫЕ ОСОБЕННОСТИ НАНОКОМПОЗИТА FeNi3/C, ПОЛУЧЕННОГО ПРИ ИК–НАГРЕВЕ , 2015 .

[16]  Л. В. Кожитов,et al.  НОВЫЕ МЕТАЛЛОУГЛЕРОДНЫЕ НАНОКОМПОЗИТЫ И УГЛЕРОДНЫЙ НАНОКРИСТАЛЛИЧЕСКИЙ МАТЕРИАЛ С ПЕРСПЕКТИВНЫМИ СВОЙСТВАМИ ДЛЯ РАЗВИТИЯ ЭЛЕКТРОНИКИ , 2015 .

[17]  L. Kozhitov,et al.  Formation of FeNi 3 /C Nanocomposite from Fe and Ni Salts and Polyacrylonitrile Under IR-Heating , 2012 .

[18]  A. Stiegman,et al.  Transparent, Superparamagnetic KCo[FeIII(CN)6]–Silica Nanocomposites with Tunable Photomagnetism , 2003 .