The wild sweetpotato (Ipomoea trifida) genome provides insights into storage root development

[1]  G. C. Yencho,et al.  Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement , 2018, Nature Communications.

[2]  J. Monroe,et al.  Review: The Arabidopsis β-amylase (BAM) gene family: Diversity of form and function. , 2018, Plant science : an international journal of experimental plant biology.

[3]  David Sankoff,et al.  Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. , 2018, Nature Genetics.

[4]  S. Zhao,et al.  Analysis of evolution and genetic diversity of sweetpotato and its related different polyploidy wild species I. trifida using RAD-seq , 2018, BMC Plant Biology.

[5]  R. Jarret,et al.  Parallel evolution of storage roots in morning glories (Convolvulaceae) , 2018, BMC Plant Biology.

[6]  Dong Wang,et al.  Starch content differences between two sweet potato accessions are associated with specific changes in gene expression , 2018, Functional & Integrative Genomics.

[7]  M. Rausher,et al.  Reconciling Conflicting Phylogenies in the Origin of Sweet Potato and Dispersal to Polynesia , 2018, Current Biology.

[8]  G. Gheysen,et al.  Horizontal Gene Transfer Contributes to Plant Evolution: The Case of Agrobacterium T-DNAs , 2017, Front. Plant Sci..

[9]  Martin Vingron,et al.  Haplotype-resolved sweet potato genome traces back its hexaploidization history , 2017, Nature Plants.

[10]  Kun Lu,et al.  Comparative Transcriptome Analysis Reveals Critical Function of Sucrose Metabolism Related-Enzymes in Starch Accumulation in the Storage Root of Sweet Potato , 2017, Front. Plant Sci..

[11]  S. Isobe,et al.  Challenges to genome sequence dissection in sweetpotato , 2017, Breeding science.

[12]  G. Martin,et al.  iTAK: A Program for Genome-wide Prediction and Classification of Plant Transcription Factors, Transcriptional Regulators, and Protein Kinases. , 2016, Molecular plant.

[13]  H. Zhai,et al.  A genome-wide BAC-end sequence survey provides first insights into sweetpotato (Ipomoea batatas (L.) Lam.) genome composition , 2016, BMC Genomics.

[14]  Y. Sakakibara,et al.  Genome sequence and analysis of the Japanese morning glory Ipomoea nil , 2016, Nature Communications.

[15]  Masaru Tanaka Recent Progress in Molecular Studies on Storage Root Formation in Sweetpotato (Ipomoea batatas) , 2016 .

[16]  Sergey Koren,et al.  Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii , a progenitor of bread wheat , with the mega-reads algorithm , 2016 .

[17]  Xingang Li,et al.  Construction of a high-density genetic map of Ziziphus jujuba Mill. using genotyping by sequencing technology , 2016, Tree Genetics & Genomes.

[18]  J. Weng,et al.  Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines , 2016, BMC Genomics.

[19]  Min Zhang,et al.  Altered Phenylpropanoid Metabolism in the Maize Lc-Expressed Sweet Potato (Ipomoea batatas) Affects Storage Root Development , 2016, Scientific Reports.

[20]  Shucai Wang,et al.  Constitutive Expression of OsIAA9 Affects Starch Granules Accumulation and Root Gravitropic Response in Arabidopsis , 2015, Front. Plant Sci..

[21]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[22]  Xinliang Chen,et al.  Temporal patterns of gene expression associated with tuberous root formation and development in sweetpotato (Ipomoea batatas) , 2015, BMC Plant Biology.

[23]  A. Xiong,et al.  Morphological characteristics, anatomical structure, and gene expression: novel insights into gibberellin biosynthesis and perception during carrot growth and development , 2015, Horticulture Research.

[24]  G. C. Yencho,et al.  Conventional breeding, marker-assisted selection, genomic selection and inbreeding in clonally propagated crops: a case study for cassava , 2015, Theoretical and Applied Genetics.

[25]  R. Jarret,et al.  The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: An example of a naturally transgenic food crop , 2015, Proceedings of the National Academy of Sciences.

[26]  S. Tabata,et al.  Survey of genome sequences in a wild sweet potato, Ipomoea trifida (H. B. K.) G. Don , 2015, DNA research : an international journal for rapid publication of reports on genes and genomes.

[27]  J. W. Allwood,et al.  Acclimation of metabolism to light in A rabidopsis thaliana: the glucose 6‐phosphate/phosphate translocator GPT2 directs metabolic acclimation , 2015, Plant, cell & environment.

[28]  Jayarama,et al.  The coffee genome provides insight into the convergent evolution of caffeine biosynthesis , 2014, Science.

[29]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[30]  Steven Maere,et al.  Tangled up in two: a burst of genome duplications at the end of the Cretaceous and the consequences for plant evolution , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[31]  H. Zhai,et al.  Identification of QTLs for storage root yield in sweetpotato , 2014 .

[32]  Tetsuya Hayashi,et al.  Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads , 2014, Genome research.

[33]  A. M. Kayastha,et al.  Β-Amylase from Starchless Seeds of Trigonella Foenum-Graecum and Its Localization in Germinating Seeds , 2014, PloS one.

[34]  L. An The Construction of Genomic Fosmid Library and Library PCR Screening System on Ipomoea trifida( Kunth) G. Don , 2014 .

[35]  李飞,et al.  三个耐冻性不同的马铃薯野生种中 FAD2 基因的克隆及表达分析 , 2013 .

[36]  Genoveva Rossel,et al.  Disentangling the Origins of Cultivated Sweet Potato (Ipomoea batatas (L.) Lam.) , 2013, PloS one.

[37]  D. McKey,et al.  Historical collections reveal patterns of diffusion of sweet potato in Oceania obscured by modern plant movements and recombination , 2013, Proceedings of the National Academy of Sciences.

[38]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[39]  Katsutoshi Watanabe,et al.  A RAD-based linkage map and comparative genomics in the gudgeons (genus Gnathopogon, Cyprinidae) , 2013, BMC Genomics.

[40]  R. Gibbs,et al.  Mind the Gap: Upgrading Genomes with Pacific Biosciences RS Long-Read Sequencing Technology , 2012, PloS one.

[41]  R. Senthilkumar,et al.  Multiple biological functions of sporamin related to stress tolerance in sweet potato (Ipomoea batatas Lam). , 2012, Biotechnology advances.

[42]  Qiang Wang,et al.  The oyster genome reveals stress adaptation and complexity of shell formation , 2012, Nature.

[43]  R. Henry,et al.  SNP in starch biosynthesis genes associated with nutritional and functional properties of rice , 2012, Scientific Reports.

[44]  Guangrui Huang,et al.  HaploMerger: Reconstructing allelic relationships for polymorphic diploid genome assemblies , 2012, Genome research.

[45]  Mingfang Zhang,et al.  Starch accumulation and starch related genes expression in novel inter-specific inbred squash line and their parents during fruit development , 2012 .

[46]  Jeremy D. DeBarry,et al.  MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity , 2012, Nucleic acids research.

[47]  J. V. Ooijen,et al.  Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. , 2011 .

[48]  David M. A. Martin,et al.  Genome sequence and analysis of the tuber crop potato , 2011, Nature.

[49]  Youzhi Ma,et al.  Functions and application of the AP2/ERF transcription factor family in crop improvement. , 2011, Journal of integrative plant biology.

[50]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[51]  J. V. van Ooijen Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. , 2011, Genetics research.

[52]  Zhao-Bang Zeng,et al.  Windows QTL Cartographer 2·5 , 2011 .

[53]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[54]  J. Shin,et al.  SRD1 is involved in the auxin-mediated initial thickening growth of storage root by enhancing proliferation of metaxylem and cambium cells in sweetpotato (Ipomoea batatas) , 2010, Journal of experimental botany.

[55]  Huanming Yang,et al.  De novo assembly of human genomes with massively parallel short read sequencing. , 2010, Genome research.

[56]  R. Sederoff,et al.  Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. , 2010, Plant & cell physiology.

[57]  V. Njiti,et al.  Wx intron variations support an allohexaploid origin of the sweetpotato [Ipomoea batatas (L.) Lam] , 2010, Euphytica.

[58]  M. Estelle,et al.  Mechanism of auxin-regulated gene expression in plants. , 2009, Annual review of genetics.

[59]  A. Meyer,et al.  The evolutionary significance of ancient genome duplications , 2009, Nature Reviews Genetics.

[60]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[61]  Nansheng Chen,et al.  Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences , 2009, Current protocols in bioinformatics.

[62]  Haibao Tang,et al.  Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. , 2008, Genome research.

[63]  M. Nakatani,et al.  Expression of class I knotted1-like homeobox genes in the storage roots of sweetpotato (Ipomoea batatas). , 2008, Journal of plant physiology.

[64]  K. Yeh,et al.  IbMADS1 (Ipomoea batatas MADS-box 1 gene) is Involved in Tuberous Root Initiation in Sweet Potato (Ipomoea batatas) , 2008, Annals of botany.

[65]  Robert D Schnabel,et al.  SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries , 2008, Nature Methods.

[66]  Jonathan E. Allen,et al.  Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments , 2007, Genome Biology.

[67]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[68]  Zhao Xu,et al.  LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons , 2007, Nucleic Acids Res..

[69]  Keith Bradnam,et al.  CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes , 2007, Bioinform..

[70]  B. Sosinski,et al.  The effect of replicate number and image analysis method on sweetpotato [Ipomoea batatas (L.) Lam.] cDNA microarray results , 2005, Plant Molecular Biology Reporter.

[71]  Enrique Blanco,et al.  Using geneid to Identify Genes , 2002, Current protocols in bioinformatics.

[72]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[73]  Nello Cristianini,et al.  CAFE: a computational tool for the study of gene family evolution , 2006, Bioinform..

[74]  Burkhard Morgenstern,et al.  Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources , 2006, BMC Bioinformatics.

[75]  Richard G. F. Visser,et al.  RECORD: a novel method for ordering loci on a genetic linkage map , 2005, Theoretical and Applied Genetics.

[76]  J. Jurka,et al.  Repbase Update, a database of eukaryotic repetitive elements , 2005, Cytogenetic and Genome Research.

[77]  Eugene W. Myers,et al.  PILER : identification and classification of genomic repeats , 2005 .

[78]  Pavel A. Pevzner,et al.  De novo identification of repeat families in large genomes , 2005, ISMB.

[79]  Steven Salzberg,et al.  TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders , 2004, Bioinform..

[80]  Ian Korf,et al.  Gene finding in novel genomes , 2004, BMC Bioinformatics.

[81]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[82]  A. Kriegner,et al.  A genetic linkage map of sweetpotato [Ipomoea batatas (L.) Lam.] based on AFLP markers , 2003, Molecular Breeding.

[83]  K. Yeh,et al.  Functional activity of sporamin from sweet potato (Ipomoea batatas Lam.): a tuber storage protein with trypsin inhibitory activity , 1997, Plant Molecular Biology.

[84]  I. Nishiyama,et al.  Evolutionary autoploidy in the sweet potato (Ipomoea batatas (L.) Lam.) and its progenitors , 1975, Euphytica.

[85]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[86]  P. Shewry Tuber storage proteins. , 2003, Annals of botany.

[87]  W. Yi.,et al.  β-Amylase Is Predominantly Localized to Plastids in the Developing Tuberous Root of Sweet Potato , 2003 .

[88]  L. Jouanin,et al.  AtBXL1, a novel higher plant (Arabidopsis thaliana) putative beta-xylosidase gene, is involved in secondary cell wall metabolism and plant development. , 2003, The Plant journal : for cell and molecular biology.

[89]  Peer Bork,et al.  Systematic identification of novel protein domain families associated with nuclear functions. , 2002, Genome research.

[90]  V. Solovyev,et al.  Ab initio gene finding in Drosophila genomic DNA. , 2000, Genome research.

[91]  K. Katayama,et al.  Root Thickness of Diploid lpomoea trifida (H. B. K.) G. Don and Performance of Progeny Derived from the Cross with Sweetpotato , 1999 .

[92]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[93]  M. Kitamura,et al.  Construction of adenovirus vectors through Cre-lox recombination , 1997, Journal of virology.

[94]  J. Woolfe Sweet Potato: An Untapped Food Resource , 1992 .

[95]  I. Shiotani,et al.  Genomic Structure of the Sweet Potato and Hexaploids in Ipomoea trifida (H.B.K.) DON. , 1989 .

[96]  D. Austin The Ipomoea batatas complex - I. Taxonomy. , 1978 .

[97]  I. Nishiyama Evolution and Domestication of the Sweet Potato , 1971 .