Functionalized carbon nanotubes and device applications

Carbon nanotubes, in which the two-dimensional hexagonal lattice of graphene is transformed into a quasi-one-dimensional lattice by conserving the local bond arrangement, provide several structural parameters for engineering novel physical properties suitable for ultimate miniaturization. Recent interest in nanoscience and nanotechnology has driven a tremendous research activity in carbon nanotubes, which has dealt with a variety of problems and produced a number of new results. Most of the effort has gone into revealing various physical properties of nanotubes and functionalizing them in different ways. This paper covers a narrow region in this enormous research field and reviews only a limited number of recent studies which fit within its scope. First, we examine selected physical properties of bare carbon nanotubes, and then study how the mechanical and electronic properties of different tubes can be modified by radial strain, structural defects and adsorption of foreign atoms and molecules. Magnetization of carbon nanotubes by foreign atom adsorption has been of particular interest. Finally, we discuss specific device models as well as fabricated devices which exploit various properties of carbon nanotubes.

[1]  Mathieu Kemp,et al.  Conductance of Molecular Wires: Influence of Molecule−Electrode Binding , 1999 .

[2]  S. Ciraci,et al.  Energetics and Electronic Structures of Individual Atoms Adsorbed on Carbon Nanotubes , 2004 .

[3]  Meijie Tang,et al.  Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation , 2000, Nature.

[4]  David S. Sholl,et al.  Quantum Sieving in Carbon Nanotubes and Zeolites , 1999 .

[5]  C. Roland,et al.  Charge transport through small silicon clusters , 2002 .

[6]  M. P. Anantram,et al.  Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain , 1999 .

[7]  Kwon,et al.  Fractional quantum conductance in carbon nanotubes , 2000, Physical review letters.

[8]  Zhang,et al.  Gapping by squashing: metal-insulator and insulator-metal transitions in collapsed carbon nanotubes , 2000, Physical review letters.

[9]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[10]  S. Ciraci,et al.  A comparative study of O2 adsorbed carbon nanotubes , 2003 .

[11]  A. D. Corso,et al.  Electronic properties of ultra-thin aluminum nanowires , 2000, cond-mat/0003448.

[12]  A. M. Rao,et al.  Probing the single-wall carbon nanotube bundle: Raman scattering under high pressure , 1999 .

[13]  Tian,et al.  Aharonov-Bohm-type effect in graphene tubules: A Landauer approach. , 1994, Physical review. B, Condensed matter.

[14]  Jian Wang,et al.  Ab initio modeling of quantum transport properties of molecular electronic devices , 2001 .

[15]  R Martel,et al.  Carbon nanotubes as schottky barrier transistors. , 2002, Physical review letters.

[16]  S. Fan,et al.  Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction , 1997 .

[17]  A. M. Rao,et al.  Properties of C60 polymerized under high pressure and temperature , 1997 .

[18]  L. Dalton,et al.  Femtosecond nearly degenerate four-wave mixing in C60 films between 0.55 and 0.70 μm , 2000 .

[19]  M. Dresselhaus,et al.  Carbon fibers based on C60 and their symmetry. , 1992, Physical review. B, Condensed matter.

[20]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[21]  Benedict,et al.  Hybridization effects and metallicity in small radius carbon nanotubes. , 1994, Physical review letters.

[22]  Robert C. Bowman,et al.  Hydrogen desorption and adsorption measurements on graphite nanofibers , 1998 .

[23]  S. Jarvis,et al.  Interaction forces and conduction properties between multi wall carbon nanotube tips and Au(111). , 2003, Ultramicroscopy.

[24]  C. Lieber,et al.  Atomic structure and electronic properties of single-walled carbon nanotubes , 1998, Nature.

[25]  Zhong Lin Wang,et al.  Magnetic properties of Fe nanoparticles trapped at the tips of the aligned carbon nanotubes , 2001 .

[26]  Leonard,et al.  Role of fermi-level pinning in nanotube schottky diodes , 2000, Physical review letters.

[27]  R. Landauer,et al.  Electrical transport in open and closed systems , 1987 .

[28]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[29]  S. Ciraci,et al.  Conductance through a single atom , 1997 .

[30]  Tekman,et al.  Theoretical study of transport through a quantum point contact. , 1991, Physical review. B, Condensed matter.

[31]  Otto Zhou,et al.  ELECTROCHEMICAL INTERCALATION OF SINGLE-WALLED CARBON NANOTUBES WITH LITHIUM , 1999 .

[32]  Sasaki,et al.  Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure , 2000, Physical review letters.

[33]  S. Ciraci,et al.  Effects of hydrogen adsorption on single-wall carbon nanotubes: Metallic hydrogen decoration , 2002, cond-mat/0208510.

[34]  S. Louie,et al.  Possible explanation for the conductance of a single quantum unit in metallic carbon nanotubes , 1999 .

[35]  P. Avouris,et al.  Theoretical Study of Oxygen Adsorption on Graphite and the (8,0) Single-walled Carbon Nanotube , 2001 .

[36]  Yang,et al.  Electronic structure of deformed carbon nanotubes , 2000, Physical review letters.

[37]  P. Avouris,et al.  Oscillatory Conductance of Carbon-Atom Wires , 1998 .

[38]  Paul L. McEuen,et al.  Single-Electron Transport in Ropes of Carbon Nanotubes , 1997, Science.

[39]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[40]  N. Kobayashi,et al.  Conduction channels at finite bias in single-atom gold contacts , 1999 .

[41]  C. Roland,et al.  Carbon nanotubes in the Coulomb blockade regime , 2001 .

[42]  Chen,et al.  High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures , 1999, Science.

[43]  Oguz Gulseren,et al.  Systematic study of adsorption of single atoms on a carbon nanotube , 2003 .

[44]  Phaedon Avouris,et al.  The effect of structural distortions on the electronic structure of carbon nanotubes , 1998 .

[45]  A. Govindaraj,et al.  Pressure-induced reversible transformation in single-wall carbon nanotube bundles studied by Raman spectroscopy , 2000 .

[46]  Rodney S. Ruoff,et al.  Radial deformation of carbon nanotubes by van der Waals forces , 1993, Nature.

[47]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[48]  Yuchen Ma,et al.  Effective hydrogen storage in single-wall carbon nanotubes , 2001 .

[49]  S. Ciraci,et al.  Variable and reversible quantum structures on a single carbon nanotube , 2000, cond-mat/0011309.

[50]  Yong‐Hyun Kim,et al.  Band-gap modification by radial deformation in carbon nanotubes , 1999 .

[51]  Quantum heat transfer through an atomic wire , 1999, cond-mat/9908204.

[52]  M. Dresselhaus,et al.  Tunneling conductance of connected carbon nanotubes. , 1996, Physical review. B, Condensed matter.

[53]  Vijay Patel,et al.  Quantum superposition of distinct macroscopic states , 2000, Nature.

[54]  G. Scoles,et al.  OXYGEN ADSORPTION ON GRAPHITE AND NANOTUBES , 2003 .

[55]  Philip Kim,et al.  Structure and Electronic Properties of Carbon Nanotubes , 2000 .

[56]  Miyamoto,et al.  Chiral conductivities of nanotubes. , 1996, Physical review letters.

[57]  Hongjie Dai,et al.  Formation of metal nanowires on suspended single-walled carbon nanotubes , 2000 .

[58]  J. M. Taylor,et al.  Conductance, I − V curves, and negative differential resistance of carbon atomic wires , 2001 .

[59]  Zhong Lin Wang,et al.  Carbon nanotube quantum resistors , 1998, Science.

[60]  Bingqing Wei,et al.  Miniaturized gas ionization sensors using carbon nanotubes , 2003, Nature.

[61]  Benedict,et al.  Quantum conductance of carbon nanotubes with defects. , 1996, Physical review. B, Condensed matter.

[62]  Weidian C. Shen,et al.  Investigation of the radial compression of carbon nanotubes with a scanning probe microscope , 2000, Physical review letters.

[63]  J. M. van Ruitenbeek,et al.  Formation and manipulation of a metallic wire of single gold atoms , 1998, Nature.

[64]  Andrew G. Rinzler,et al.  Mechanical Energy Storage in Carbon Nanotube Springs , 1999 .

[65]  Robert H. Hauge,et al.  Purification and Characterization of Single-Wall Carbon Nanotubes , 2001 .

[66]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[67]  Barnett,et al.  Metal-semiconductor nanocontacts: silicon nanowires , 2000, Physical review letters.

[68]  T. Takarada,et al.  Gasification behavior of carbon nanotubes , 1997 .

[69]  Flores,et al.  Electrochemical-potential variations across a constriction. , 1990, Physical review. B, Condensed matter.

[70]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[71]  Thomas A. Halgren,et al.  The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters , 1992 .

[72]  J. Ihm,et al.  Ab initio pseudopotential method for the calculation of conductance in quantum wires , 1999 .

[73]  A. Govindaraj,et al.  Barkhausen jumps and related magnetic properties of iron nanowires encapsulated in aligned carbon nanotube bundles , 2002 .

[74]  Hendrik Ulbricht,et al.  Physisorption of molecular oxygen on single-wall carbon nanotube bundles and graphite , 2002 .

[75]  Yoshinori Ando,et al.  Pentagons, heptagons and negative curvature in graphite microtubule growth , 1992, Nature.

[76]  E. Lifshitz The theory of molecular attractive forces between solids , 1956 .

[77]  Cohen,et al.  Electronic properties of oxidized carbon nanotubes , 2000, Physical review letters.

[78]  S. Ciraci,et al.  Systematic ab initio study of curvature effects in carbon nanotubes , 2002, cond-mat/0203229.

[79]  B. Chalamala,et al.  Current saturation mechanisms in carbon nanotube field emitters , 2000 .

[80]  S. Ciraci,et al.  Exohydrogenated single-wall carbon nanotubes , 2001, cond-mat/0105244.

[81]  C. Dekker,et al.  Spatially resolved scanning tunneling spectroscopy on single-walled carbon nanotubes , 2000 .

[82]  C Lavoie,et al.  Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. , 2001, Physical review letters.

[83]  M. Peters,et al.  Structural phase transition in carbon nanotube bundles under pressure , 2000 .

[84]  Kenneth A. Dean,et al.  Field emission microscopy of carbon nanotube caps , 1999 .

[85]  Charles M. Lieber,et al.  Energy Gaps in "Metallic" Single-Walled Carbon Nanotubes , 2001, Science.

[86]  Zettl,et al.  Extreme oxygen sensitivity of electronic properties of carbon nanotubes , 2000, Science.

[87]  R. Ruoff,et al.  Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force , 2000, Physical review letters.

[88]  Colombo,et al.  Valence-band offsets at strained Si/Ge interfaces. , 1991, Physical review. B, Condensed matter.

[89]  E. Braun,et al.  DNA-Templated Carbon Nanotube Field-Effect Transistor , 2003, Science.

[90]  White,et al.  Are fullerene tubules metallic? , 1992, Physical review letters.

[91]  Xiangdong Liu,et al.  Selectable functionalization of single-walled carbon nanotubes resulting fromCHn(n=1–3)adsorption , 2004 .

[92]  E. Tosatti,et al.  Weird Gold Nanowires , 2000, Science.

[93]  Habib Mehrez,et al.  Yielding and fracture mechanisms of nanowires , 1997 .

[94]  M. Mazzoni,et al.  Bandgap closure of a flattened semiconductor carbon nanotube: A first-principles study , 2000 .

[95]  Hong Guo,et al.  I-V characteristics and differential conductance fluctuations of Au nanowires , 2001, physics/0106027.

[96]  Tekman,et al.  Theoretical study of short- and long-range forces and atom transfer in scanning force microscopy. , 1992, Physical review. B, Condensed matter.

[97]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[98]  M. Fuhrer,et al.  Extraordinary Mobility in Semiconducting Carbon Nanotubes , 2004 .

[99]  G. Muralidharan,et al.  Apatites and britholites, are they akin - as probed by Eu3+ luminescence? , 2001 .

[100]  Hong Guo,et al.  Current-voltage characteristics of carbon nanotubes with substitutional nitrogen , 2002 .

[101]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[102]  Lang,et al.  Resistance of atomic wires. , 1995, Physical review. B, Condensed matter.

[103]  X. Gong,et al.  Chemisorption of hydrogen molecules on carbon nanotubes under high pressure. , 2001, Physical review letters.

[104]  S. Ciraci,et al.  Formation of quantum structures on a single nanotube by modulating hydrogen adsorption , 2003 .

[105]  A J Pérez-Jiménez,et al.  First-principles phase-coherent transport in metallic nanotubes with realistic contacts. , 2003, Physical review letters.

[106]  S. Ciraci,et al.  Pressure-induced interlinking of carbon nanotubes , 2000, cond-mat/0008476.

[107]  Boris I. Yakobson,et al.  C2F, BN, AND C NANOSHELL ELASTICITY FROM AB INITIO COMPUTATIONS , 2001 .

[108]  Yukihito Kondo,et al.  Quantized conductance through individual rows of suspended gold atoms , 1998, Nature.

[109]  S. Ciraci,et al.  TOPICAL REVIEW: Quantum effects in electrical and thermal transport through nanowires , 2001 .

[110]  Zhu,et al.  Adsorption and desorption of an O2 molecule on carbon nanotubes , 2000, Physical review letters.

[111]  G. A. D. Briggs,et al.  Elastic and shear moduli of single-walled carbon nanotube ropes , 1999 .

[112]  Steven G. Louie,et al.  Fully collapsed carbon nanotubes , 1995, Nature.

[113]  First-principles study of Li-intercalated carbon nanotube ropes , 1999, Physical review letters.

[114]  Nan Yao,et al.  Radial compression and controlled cutting of carbon nanotubes , 1998 .

[115]  P. Ordejón,et al.  Density-functional method for nonequilibrium electron transport , 2001, cond-mat/0110650.

[116]  Sawada,et al.  New one-dimensional conductors: Graphitic microtubules. , 1992, Physical review letters.

[117]  D. Srivastava,et al.  Predictions of Enhanced Chemical Reactivity at Regions of Local Conformational Strain on Carbon Nanotubes: Kinky Chemistry , 1999 .

[118]  Lang,et al.  First-principles calculation of transport properties of a molecular device , 2000, Physical review letters.

[119]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[120]  Yiming Li,et al.  Synthesis of Ultralong and High Percentage of Semiconducting Single-walled Carbon Nanotubes , 2002 .

[121]  Jian Wang,et al.  Structural and transport properties of aluminum atomic wires , 1998 .

[122]  K. Takayanagi,et al.  STRUCTURE AND CONDUCTANCE OF A GOLD ATOMIC CHAIN , 1999 .

[123]  Carbon nanotube based magnetic tunnel junctions , 2000, Physical review letters.

[124]  Hirose,et al.  First-principles calculation of the electronic structure for a bielectrode junction system under strong field and current. , 1995, Physical review. B, Condensed matter.

[125]  Vieira,et al.  Conductance steps and quantization in atomic-size contacts. , 1993, Physical review. B, Condensed matter.

[126]  T. Ichihashi,et al.  Opening carbon nanotubes with oxygen and implications for filling , 1993, Nature.

[127]  Charles M. Lieber,et al.  Synthesis and characterization of carbide nanorods , 1995, Nature.

[128]  D. Leitner,et al.  Thermal conduction through a molecule , 1999 .

[129]  S. Ciraci,et al.  Electronic structure of the contact between carbon nanotube and metal electrodes , 2003 .

[130]  Jian Wang,et al.  Quantized conductance of Si atomic wires , 1997 .

[131]  V. Simonyan,et al.  Molecular simulation of hydrogen adsorption in charged single-walled carbon nanotubes , 1999 .

[132]  J. Casulleras,et al.  Zero-temperature equation of state of quasi-one-dimensional H2 , 2000, Physical review letters.

[133]  Young-Gu Jin,et al.  Mechanism for oxidative etching in carbon nanotubes , 2002 .

[134]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[135]  D. J. Mann,et al.  Ab initio simulations of oxygen atom insertion and substitutional doping of carbon nanotubes , 2002 .

[136]  T Yildirim,et al.  Tunable adsorption on carbon nanotubes. , 2001, Physical review letters.

[137]  Markus Brink,et al.  Tuning carbon nanotube band gaps with strain. , 2003, Physical review letters.

[138]  Y. Miyamoto Mechanically stretched carbon nanotubes: Induction of chiral current. , 1996, Physical Review B (Condensed Matter).

[139]  K. Tada,et al.  Ab initio study of hydrogen adsorption to single-walled carbon nanotubes , 2001 .

[140]  R. Superfine,et al.  Tunable resistance of a carbon nanotube-graphite interface. , 2000, Science.

[141]  A. Ozpineci,et al.  Quantum effects of thermal conductance through atomic chains , 2001 .

[142]  S. Ciraci,et al.  Reversible band-gap engineering in carbon nanotubes by radial deformation , 2002 .

[143]  Christopher Roland,et al.  Resonant transmission through finite-sized carbon nanotubes , 2001 .

[144]  Jian Wang,et al.  Quantum transport through atomic wires , 1997 .

[145]  K. Chang,et al.  Resonant transport in single-wall armchair carbon nanotubes with local mirror-symmetry-breaking deformations , 2001 .

[146]  Makoto Jinno,et al.  Carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube. , 2003, Physical review letters.

[147]  S. Muramatsu,et al.  Chirality-dependence of energy gaps of semiconducting nanotubules , 1995 .

[148]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[149]  Cohen,et al.  Defects, quasibound states, and quantum conductance in metallic carbon nanotubes , 2000, Physical review letters.

[150]  J. C. Tsang,et al.  Electrically Induced Optical Emission from a Carbon Nanotube FET , 2003, Science.

[151]  S. Berezovsky,et al.  A possible origin of anomalous properties of proper uniaxial ferroelectrics near the lock-in transition , 2000 .

[152]  J. Israelachvili Intermolecular and surface forces , 1985 .

[153]  Benedict,et al.  Pure carbon nanoscale devices: Nanotube heterojunctions. , 1996, Physical review letters.

[154]  White,et al.  Helical and rotational symmetries of nanoscale graphitic tubules. , 1993, Physical review. B, Condensed matter.

[155]  Tekman,et al.  Theory of transition from the tunneling regime to point contact in scanning tunneling microscopy. , 1989, Physical review. B, Condensed matter.

[156]  Chemically active substitutional nitrogen impurity in carbon nanotubes. , 2003, Physical review letters.

[157]  P. Avouris,et al.  Carbon nanotube transistors and logic circuits , 2002 .

[158]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[159]  Muramatsu,et al.  Energy gaps of semiconducting nanotubules. , 1995, Physical review. B, Condensed matter.

[160]  Jian Wang,et al.  Capacitance of Atomic Junctions , 1998 .

[161]  Marco Buongiorno Nardelli,et al.  Electronic transport in extended systems: Application to carbon nanotubes , 1999 .

[162]  A. Buldum,et al.  Contact resistance between carbon nanotubes , 2000, cond-mat/0005523.

[163]  A. Rubio,et al.  AB INITIO STRUCTURAL, ELASTIC, AND VIBRATIONAL PROPERTIES OF CARBON NANOTUBES , 1999 .

[164]  Resonant Andreev reflections in superconductor-carbon-nanotube devices , 2001, cond-mat/0103210.

[165]  J. Ihm,et al.  Effects of oxygen adsorption on carbon nanotube field emitters , 2001 .

[166]  Alexey Bezryadin,et al.  MULTIPROBE TRANSPORT EXPERIMENTS ON INDIVIDUAL SINGLE-WALL CARBON NANOTUBES , 1998 .

[167]  Charlier,et al.  Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes. , 1996, Physical review. B, Condensed matter.

[168]  X. Gong,et al.  Oxidation of carbon nanotubes by singlet O2. , 2003, Physical review letters.

[169]  Gary G. Tibbetts,et al.  Why are carbon filaments tubular , 1984 .

[170]  Phaedon Avouris,et al.  Switching behavior of semiconducting carbon nanotubes under an external electric field , 2001 .

[171]  Astronomy,et al.  Structure of aluminum atomic chains , 2001, cond-mat/0104312.

[172]  E. J. Mele,et al.  Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes , 1997 .

[173]  A. D. Corso,et al.  String tension and stability of magic tip-suspended nanowires. , 2001, Science.

[174]  Interaction of O2 with a (9,0) carbon nanotube , 2002 .

[175]  L. Chico,et al.  Carbon-Nanotube-Based Quantum Dot , 1998 .

[176]  S. Ciraci,et al.  Oxygenation of carbon nanotubes: Atomic structure, energetics, and electronic structure , 2003 .

[177]  J. Hahn,et al.  Defect-Induced Oxidation of Graphite , 1999 .

[178]  Kurt Stokbro,et al.  Theory of rectification in tour wires: the role of electrode coupling. , 2002, Physical review letters.

[179]  Jian Wang,et al.  Ab initio modeling of open systems: Charge transfer, electron conduction, and molecular switching of a C 60 device , 2000, cond-mat/0007176.

[180]  C. Quate,et al.  Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes , 1999 .

[181]  Richard Martel,et al.  Controlling doping and carrier injection in carbon nanotube transistors , 2002 .

[182]  Kong,et al.  Controllable reversibility of an sp(2) to sp(3) transition of a single wall nanotube under the manipulation of an AFM tip: A nanoscale electromechanical switch? , 2000, Physical review letters.

[183]  S. Ciraci,et al.  High-conducting magnetic nanowires obtained from uniform titanium-covered carbon nanotubes , 2004 .

[184]  Jijun Zhao,et al.  Magnetism of transition-metal/carbon-nanotube hybrid structures. , 2003, Physical review letters.

[185]  Cheng,et al.  Hydrogen storage in single-walled carbon nanotubes at room temperature , 1999, Science.

[186]  Alex Kleiner,et al.  Band gaps of primary metallic carbon nanotubes , 2000, cond-mat/0007244.

[187]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[188]  Steven G. Louie,et al.  Self-inductance of chiral conducting nanotubes , 1999 .

[189]  Guo,et al.  Dynamic conductance of carbon nanotubes , 2000, Physical Review Letters.

[190]  Cees Dekker,et al.  Transport through the interface between a semiconducting carbon nanotube and a metal electrode , 2002 .

[191]  Qian Wang,et al.  Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems , 2002 .

[192]  Hongjie Dai,et al.  Electrical measurements of individual semiconducting single-walled carbon nanotubes of various diameters , 2000 .

[193]  Kong,et al.  Intrinsic electrical properties of individual single-walled carbon nanotubes with small band gaps , 2000, Physical review letters.

[194]  Robertson,et al.  Energetics of nanoscale graphitic tubules. , 1992, Physical review. B, Condensed matter.

[195]  First-principles approach to electrical transport in atomic-scale nanostructures , 2002, cond-mat/0202375.