Interface Properties of Atomic-Layer-Deposited Al2O3 Thin Films on Ultraviolet/Ozone-Treated Multilayer MoS2 Crystals.

We report the interface properties of atomic-layer-deposited Al2O3 thin films on ultraviolet/ozone (UV/O3)-treated multilayer MoS2 crystals. The formation of S-O bonds on MoS2 after low-power UV/O3 treatment increased the surface energy, allowing the subsequent deposition of uniform Al2O3 thin films. The capacitance-voltage measurement of Au-Al2O3-MoS2 metal oxide semiconductor capacitors indicated n-type MoS2 with an electron density of ∼10(17) cm(-3) and a minimum interface trap density of ∼10(11) cm(-2) eV(-1). These results demonstrate the possibility of forming a high-quality Al2O3-MoS2 interface by proper UV/O3 treatment, providing important implications for their integration into field-effect transistors.

[1]  Ho Won Jang,et al.  The use of UV/ozone-treated MoS2 nanosheets for extended air stability in organic photovoltaic cells. , 2014, Physical chemistry chemical physics : PCCP.

[2]  Peng Zhou,et al.  The Integration of Sub-10 nm Gate Oxide on MoS2 with Ultra Low Leakage and Enhanced Mobility , 2015, Scientific Reports.

[3]  P. Jeon,et al.  Trap density probing on top-gate MoS₂ nanosheet field-effect transistors by photo-excited charge collection spectroscopy. , 2015, Nanoscale.

[4]  Han Liu,et al.  MoS 2 Dual-Gate MOSFET With Atomic-Layer-Deposited Al 2 O 3 as Top-Gate Dielectric , 2016 .

[5]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[6]  Woong Choi,et al.  Improved growth behavior of atomic-layer-deposited high-k dielectrics on multilayer MoS2 by oxygen plasma pretreatment. , 2013, ACS applied materials & interfaces.

[7]  C. Jin,et al.  Engineering crystalline structures of two-dimensional MoS2 sheets for high-performance organic solar cells , 2014 .

[8]  In-Seok Yeo,et al.  Characteristics of n+ polycrystalline-Si/Al2O3/Si metal–oxide– semiconductor structures prepared by atomic layer chemical vapor deposition using Al(CH3)3 and H2O vapor , 2001 .

[9]  Thomas Mikolajick,et al.  On the Control of the Fixed Charge Densities in Al2O3-Based Silicon Surface Passivation Schemes. , 2015, ACS applied materials & interfaces.

[10]  Robert M. Wallace,et al.  MoS2 functionalization for ultra-thin atomic layer deposited dielectrics , 2014 .

[11]  D. Schroder Semiconductor Material and Device Characterization , 1990 .

[12]  Souheng Wu,et al.  Calculation of interfacial tension in polymer systems , 2007 .

[13]  Gyu-Tae Kim,et al.  Low-frequency noise in multilayer MoS2 field-effect transistors: the effect of high-k passivation. , 2014, Nanoscale.

[14]  Dieter K. Schroder,et al.  Semiconductor Material and Device Characterization: Schroder/Semiconductor Material and Device Characterization, Third Edition , 2005 .

[15]  Arindam Ghosh,et al.  Nature of electronic states in atomically thin MoS₂ field-effect transistors. , 2011, ACS nano.

[16]  Peide D. Ye,et al.  The integration of high-k dielectric on two-dimensional crystals by atomic layer deposition , 2012 .

[17]  S. Khondaker,et al.  Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma. , 2014, Nanoscale.

[18]  Kinam Kim,et al.  High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals , 2012, Nature Communications.

[19]  Siddharth Rajan,et al.  Electrical properties of atomic layer deposited aluminum oxide on gallium nitride , 2011, 1109.2566.

[20]  N. Dai,et al.  Transforming bilayer MoS2 into single-layer with strong photoluminescence using UV-ozone oxidation , 2015, Nano Research.

[21]  Bin Liu,et al.  Hysteresis in single-layer MoS2 field effect transistors. , 2012, ACS nano.