Vandermonde Matrices with Nodes in the Unit Disk and the Large Sieve

We derive bounds on the extremal singular values and the condition number of NxK, with N>=K, Vandermonde matrices with nodes in the unit disk. The mathematical techniques we develop to prove our main results are inspired by a link---first established by by Selberg [1] and later extended by Moitra [2]---between the extremal singular values of Vandermonde matrices with nodes on the unit circle and large sieve inequalities. Our main conceptual contribution lies in establishing a connection between the extremal singular values of Vandermonde matrices with nodes in the unit disk and a novel large sieve inequality involving polynomials in z \in C with |z|<=1. Compared to Bazan's upper bound on the condition number [3], which, to the best of our knowledge, constitutes the only analytical result---available in the literature---on the condition number of Vandermonde matrices with nodes in the unit disk, our bound not only takes a much simpler form, but is also sharper for certain node configurations. Moreover, the bound we obtain can be evaluated consistently in a numerically stable fashion, whereas the evaluation of Bazan's bound requires the solution of a linear system of equations which has the same condition number as the Vandermonde matrix under consideration and can therefore lead to numerical instability in practice. As a byproduct, our result---when particularized to the case of nodes on the unit circle---slightly improves upon the Selberg-Moitra bound.

[1]  Karla Rost,et al.  Matrix exponentials and inversion of confluent Vandermonde matrices. , 2004 .

[2]  H. A. Lorentz,et al.  Collected Papers: Volume II , 1936 .

[3]  H. Montgomery The analytic principle of the large sieve , 1978 .

[4]  Yonina C. Eldar,et al.  Blind Multiband Signal Reconstruction: Compressed Sensing for Analog Signals , 2007, IEEE Transactions on Signal Processing.

[5]  Tapan K. Sarkar,et al.  Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..

[6]  Ismail Sahar,et al.  Super-Resolution , 2014, Encyclopedia of Biometrics.

[7]  A. Ingham Some trigonometrical inequalities with applications to the theory of series , 1936 .

[8]  Thomas Kailath,et al.  ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[9]  Doreen Meier,et al.  Twentieth Century Harmonic Analysis A Celebration , 2016 .

[10]  L. Carleson,et al.  The Collected Works of Arne Beurling , 1989 .

[11]  Gongguo Tang,et al.  Near minimax line spectral estimation , 2013, 2013 47th Annual Conference on Information Sciences and Systems (CISS).

[12]  Hugh L. Montgomery,et al.  A further generalization of Hilbert's inequality , 1999 .

[13]  S. Lang,et al.  Collected Papers Volume III , 2000 .

[14]  Gabriele Steidl,et al.  Fast Summation at Nonequispaced Knots by NFFT , 2003, SIAM J. Sci. Comput..

[15]  J. Schur Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen. , 1911 .

[16]  Walter Galitschi,et al.  On inverses of Vandermonde and confluent Vandermonde matrices , 1962 .

[17]  Enrico Bombieri,et al.  A note on the large sieve , 1971 .

[18]  J. Vaaler,et al.  A class of extremal functions for the Fourier transform , 1981 .

[19]  Athanasios A. Pantelous,et al.  Generalized inverses of the vandermonde matrix: Applications in control theory , 2013 .

[20]  Å. Björck,et al.  Algorithms for confluent Vandermonde systems , 1973 .

[21]  H. Montgomery,et al.  Hilbert’s inequality , 1974 .

[22]  Ping Feng,et al.  Spectrum-blind minimum-rate sampling and reconstruction of multiband signals , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[23]  Jean-Pierre Serre The Large Sieve , 1997 .

[24]  Enrico Bombieri,et al.  On the Large Sieve Method , 1969 .

[25]  Enrico Bombieri,et al.  Le grand crible dans la théorie analytique des nombres , 1987 .

[26]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[27]  K. F. Roth Remark concerning integer sequences , 1964 .

[28]  A. Meyer,et al.  Introduction to Number Theory , 2005 .

[29]  K. F. Roth On the large sieves of Linnik and Rényi , 1965 .

[30]  D. Potts,et al.  Error Estimates for the ESPRIT Algorithm , 2017 .

[31]  Wenjing Liao,et al.  MUSIC for Single-Snapshot Spectral Estimation: Stability and Super-resolution , 2014, ArXiv.

[32]  Ankur Moitra,et al.  Super-resolution, Extremal Functions and the Condition Number of Vandermonde Matrices , 2014, STOC.

[33]  W. Gautschi,et al.  Lower bounds for the condition number of Vandermonde matrices , 1987 .

[34]  Walter Gautschi,et al.  Vandermonde matrices on the circle: Spectral properties and conditioning , 1990 .

[35]  G. Jameson Notes on the large sieve , 2006 .

[36]  Karlheinz Gröchenig,et al.  Irregular sampling, Toeplitz matrices, and the approximation of entire functions of exponential type , 1999, Math. Comput..

[37]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[38]  A. Rényi On the large sieve of Ju V. Linnik , 1951 .

[39]  H. Davenport,et al.  The values of a trigonometrical polynomial at well spaced points , 1966 .

[40]  Arie Feuer,et al.  On perfect conditioning of Vandermonde matrices on the unit circle , 2007 .

[41]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[42]  G. Heinig,et al.  Recursive solution of Cauchy-Vandermonde systems of equations , 1995 .

[43]  Walter Gautschi,et al.  On inverses of Vandermonde and confluent Vandermonde matrices. II , 1963 .

[44]  Enrique Zuazua,et al.  Discrete Ingham Inequalities and Applications , 2006, SIAM J. Numer. Anal..

[45]  Peter Kritzer,et al.  From van der Corput to modern constructions of sequences for quasi-Monte Carlo rules , 2015, 1506.03764.

[46]  James S. Byrnes,et al.  Twentieth century harmonic analysis : a celebration , 2001 .

[47]  Bernhard Beckermann,et al.  The condition number of real Vandermonde, Krylov and positive definite Hankel matrices , 2000, Numerische Mathematik.

[48]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[49]  Paulo J. S. G. Ferreira,et al.  SUPERRESOLUTION, THE RECOVERY OF MISSING SAMPLES, AND VANDERMONDE MATRICES ON THE UNIT CIRCLE , 1999 .

[50]  Functions with a spectral gap , 1973 .

[51]  Fermín S. Viloche Bazán,et al.  Conditioning of Rectangular Vandermonde Matrices with Nodes in the Unit Disk , 1999, SIAM J. Matrix Anal. Appl..

[52]  Thierry Blu,et al.  Sampling signals with finite rate of innovation , 2002, IEEE Trans. Signal Process..