First-Principles Investigation on Work Function of Martensitic Carbon Steels: Effect of Interstitial Carbon on Anodic Dissolution Resistance

[1]  J. Speer,et al.  Characteristics and mechanisms of hydrogen-induced quasi-cleavage fracture of lath martensitic steel , 2021 .

[2]  H. Ke,et al.  DFT-Based Calculation of Dissolution Activation Energy and Kinetics of Ni–Cr Alloys , 2020 .

[3]  G. Frankel,et al.  Roles of Interstitial Nitrogen, Carbon, and Boron in Steel Corrosion: Generation of Oxyanions and Stabilization of Electronic Structure , 2020 .

[4]  H. Miura,et al.  First-principles analysis of the inhibitive effect of interstitial carbon on an active dissolution of martensitic steel , 2020 .

[5]  B. Shollock,et al.  Nanoscale electrochemical visualization of grain-dependent anodic iron dissolution from low carbon steel , 2020 .

[6]  Joseph H. Montoya,et al.  Anisotropic work function of elemental crystals , 2019, Surface Science.

[7]  T. Doi,et al.  Improving Pitting Corrosion Resistance at Inclusions and Ductility of a Martensitic Medium-Carbon Steel: Effectiveness of Short-Time Tempering , 2018 .

[8]  I. Muto,et al.  A Methodology for Fabrication of Highly Pitting Corrosion-Resistant Type 304 Stainless Steel by Plasma Carburizing and Post-Pickling Treatment , 2018 .

[9]  Hao Lu,et al.  Understanding the Effect of Ni on Mechanical and Wear Properties of Low-Carbon Steel from a View-Point of Electron Work Function , 2018, Metallurgical and Materials Transactions A.

[10]  M. Sluiter,et al.  Ab initio characterization of B, C, N, and O in bcc iron: Solution and migration energies and elastic strain fields , 2016 .

[11]  D. Mari,et al.  Evaluation of dislocation density and interstitial carbon content in quenched and tempered steel by internal friction , 2015 .

[12]  B. C. Cooman,et al.  Internal-friction analysis of dislocation–interstitial carbon interactions in press-hardened 22MnB5 steel , 2015 .

[13]  Shaoqing Wang,et al.  Surface energy and work function of fcc and bcc crystals: Density functional study , 2014 .

[14]  Hao Lu,et al.  Understanding the bond-energy, hardness, and adhesive force from the phase diagram via the electron work function , 2014 .

[15]  H. Miura,et al.  First-principles study on the dilute Si in bcc Fe: Electronic and elastic properties up to 12.5 at.%Si , 2013 .

[16]  A. Nagao,et al.  The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel , 2012 .

[17]  Yong Sun Corrosion behaviour of low temperature plasma carburised 316L stainless steel in chloride containing solutions , 2010 .

[18]  Yong Sun Depth-profiling electrochemical measurements of low temperature plasma carburised 316L stainless steel in 1M H2SO4 solution. , 2010 .

[19]  E. Mccafferty Introduction to Corrosion Science , 2010 .

[20]  D. Mari,et al.  Influence of the carbon content on dislocation relaxation in martensitic steels , 2009 .

[21]  P. Natishan,et al.  Enhanced Corrosion Resistance of Stainless Steel Carburized at Low Temperature , 2009 .

[22]  W. Theisen,et al.  Ferrous Materials: Steel and Cast Iron , 2008 .

[23]  Nicola Marzari,et al.  Surface energies, work functions, and surface relaxations of low index metallic surfaces from first principles , 2008, 0801.1077.

[24]  P. Natishan,et al.  Carburization-Induced Passivity of 316 L Austenitic Stainless Steel , 2007 .

[25]  Dongyang Li,et al.  Effects of the strain rate of prior deformation on the wear–corrosion synergy of carbon steel , 2007 .

[26]  D. Li,et al.  Effects of Strain Rate of Prior Deformation on Corrosion and Corrosive Wear of AISI 1045 Steel in a 3.5 Pct NaCl Solution , 2007 .

[27]  Weiwei Li,et al.  Variations of work function and corrosion behaviors of deformed copper surfaces , 2005 .

[28]  Gernot Kostorz,et al.  Phase Transformations in Materials , 2001 .

[29]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[30]  A. Baldereschi,et al.  ANOMALY IN THE ANISOTROPY OF THE ALUMINUM WORK FUNCTION , 1998 .

[31]  G. Frankel,et al.  Characterization of AA2024-T3 by Scanning Kelvin Probe Force Microscopy , 1998 .

[32]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[33]  John O’M. Bockris,et al.  Surface Electrochemistry: A Molecular Level Approach , 1993 .

[34]  R P Wei,et al.  Quasi-Cleavage and Martensite Habit Plane. , 1984 .

[35]  R. Cantor,et al.  Overview 15 The microstructure and kinetics of martensite transformations in splat-quenched Fe and FeNi alloys—I. Pure Fe , 1982 .

[36]  L. F. Porter,et al.  Hardness of tempered martensite in carbon and low-alloy steels , 1977 .

[37]  J. Naylor,et al.  Cleavage planes in lath type bainite and martensite , 1975 .

[38]  W. Tyson,et al.  Anisotropy of cleavage in B.C.C. transition metals , 1973 .

[39]  S. Trasatti Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions , 1972 .

[40]  A. Damjanović,et al.  Catalysis of the electrodic hydrogen evolution and dissolution reactions on rationally chosen substrates , 1968 .

[41]  A. Damjanović,et al.  Effect of Crystal Plane on the Mechanism and the Kinetics of Copper Electrocrystallization , 1966 .

[42]  R. Smoluchowski Anisotropy of the Electronic Work Function of Metals , 1941 .

[43]  T. Doi,et al.  Anodic Polarization Characteristics and Electrochemical Properties of Fe3C in Chloride Solutions , 2019, Journal of The Electrochemical Society.

[44]  M. Koyama,et al.  Interstitial Carbon Enhanced Corrosion Resistance of Fe-33Mn-xC Austenitic Steels: Inhibition of Anodic Dissolution , 2018 .

[45]  T. Doi,et al.  Pitting Corrosion Resistance of Martensite of AISI 1045 Steel and the Beneficial Role of Interstitial Carbon , 2017 .

[46]  A. Nagataki,et al.  Electrochemical Aspects of Interstitial Nitrogen in Carbon Steel: Passivation in Neutral Environments , 2017 .

[47]  Antoine Kahn,et al.  Fermi level, work function and vacuum level , 2016 .

[48]  S. Shibukawa,et al.  Microelectrochemical Aspects of Interstitial Carbon in Type 304 Stainless Steel: Improving Pitting Resistance at MnS Inclusion , 2015 .

[49]  I. M. Robertson,et al.  Interpretation of Hydrogen-induced Fracture Surface Morphologies for Lath Martensitic Steel , 2014 .

[50]  M. Akashi,et al.  Passivation Behavior of Carbon Steel in Aqueous Carbonate Solutions , 2007 .

[51]  Dongyang Li,et al.  Influence of surface morphology on corrosion and electronic behavior , 2006 .

[52]  Ortrud Kubaschewski,et al.  Iron-binary phase diagrams , 1982 .