On Decision Boundaries of Naïve Bayes in Continuous Domains

Naive Bayesian classifiers assume the conditional independence of attribute values given the class. Despite this in practice often violated assumption, these simple classifiers have been found efficient, effective, and robust to noise.

[1]  Luc De Raedt,et al.  Machine Learning: ECML 2001 , 2001, Lecture Notes in Computer Science.

[2]  Ron Kohavi,et al.  Supervised and Unsupervised Discretization of Continuous Features , 1995, ICML.

[3]  Pat Langley,et al.  An Analysis of Bayesian Classifiers , 1992, AAAI.

[4]  David G. Stork,et al.  Pattern Classification , 1973 .

[5]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[6]  João Gama,et al.  Iterative Bayes , 2000, Intell. Data Anal..

[7]  Xindong Wu,et al.  A Bayesian Discretizer for Real-Valued Attributes , 1996, Comput. J..

[8]  Tapio Elomaa,et al.  General and Efficient Multisplitting of Numerical Attributes , 1999, Machine Learning.

[9]  Charles X. Ling,et al.  The Representational Power of Discrete Bayesian Networks , 2002, J. Mach. Learn. Res..

[10]  Chun-Nan Hsu,et al.  Why Discretization Works for Naive Bayesian Classifiers , 2000, ICML.

[11]  Mark A. Peot,et al.  Geometric Implications of the Naive Bayes Assumption , 1996, UAI.

[12]  Usama M. Fayyad,et al.  On the Handling of Continuous-Valued Attributes in Decision Tree Generation , 1992, Machine Learning.

[13]  Pedro M. Domingos,et al.  On the Optimality of the Simple Bayesian Classifier under Zero-One Loss , 1997, Machine Learning.

[14]  Sinh Hoa Nguyen,et al.  On Finding Optimal Discretizations for Two Attributes , 1998, Rough Sets and Current Trends in Computing.

[15]  Sadaaki Miyamoto,et al.  Rough Sets and Current Trends in Computing , 2012, Lecture Notes in Computer Science.

[16]  Jason Catlett,et al.  On Changing Continuous Attributes into Ordered Discrete Attributes , 1991, EWSL.

[17]  Yves Kodratoff,et al.  Machine Learning — EWSL-91 , 1991, Lecture Notes in Computer Science.

[18]  Pat Langley,et al.  Estimating Continuous Distributions in Bayesian Classifiers , 1995, UAI.

[19]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[20]  Pat Langley,et al.  Tractable Average-Case Analysis of Naive Bayesian Classifiers , 1999, ICML.

[21]  Andrew K. C. Wong,et al.  Synthesizing Statistical Knowledge from Incomplete Mixed-Mode Data , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  P. Schönemann On artificial intelligence , 1985, Behavioral and Brain Sciences.

[23]  Tapio Elomaa,et al.  Fast Minimum Training Error Discretization , 2002, ICML.

[24]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[25]  Tapio Elomaa,et al.  Necessary and Sufficient Pre-processing in Numerical Range Discretization , 2003, Knowledge and Information Systems.

[26]  Geoffrey I. Webb,et al.  Proportional k-Interval Discretization for Naive-Bayes Classifiers , 2001, ECML.

[27]  Geoffrey I. Webb,et al.  Non-Disjoint Discretization for Naive-Bayes Classifiers , 2002, ICML.

[28]  Tapio Elomaa,et al.  Generalizing Boundary Points , 2000, AAAI/IAAI.

[29]  Usama M. Fayyad,et al.  Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning , 1993, IJCAI.