Second strain gradient elasticity of nano-objects

Mindlin's second strain gradient continuum theory for isotropic linear elastic materials is used to model two different kinds of size-dependent surface effects observed in the mechanical behaviour of nano-objects. First, the existence of an initial higher order stress represented by Mindlin's cohesion parameter, b0, makes it possible to account for the relaxation behaviour of traction-free surfaces. Second, the higher order elastic moduli, ci, coupling the strain tensor and its second gradient are shown to significantly affect the apparent elastic properties of nano-beams and nano-films under uni-axial loading. These two effects are independent from each other and allow for separated identification of the corresponding material parameters. Analytical results are provided for the size-dependent apparent shear modulus of a nano-thin strip under shear. Finite element simulations are then performed to derive the dependence of the apparent Young modulus and Poisson ratio of nano-films with respect to their thickness, and to illustrate hole free surface relaxation in a periodic nano-porous material.

[1]  J. Yvonnet,et al.  First-principles based multiscale model of piezoelectric nanowires with surface effects , 2013 .

[2]  Francesco dell’Isola,et al.  The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power , 1995 .

[3]  E. Aifantis,et al.  A simple approach to solve boundary-value problems in gradient elasticity , 1993 .

[4]  Victor A. Eremeyev,et al.  Surface viscoelasticity and effective properties of thin-walled structures at the nanoscale , 2012 .

[5]  Michael L. Roukes,et al.  Very High Frequency Silicon Nanowire Electromechanical Resonators , 2007 .

[6]  Paul Steinmann,et al.  A finite element framework for continua with boundary energies. Part III: The thermomechanical case , 2011 .

[7]  P. Beauchamp,et al.  Atomistic calculation of size effects on elastic coefficients in nanometre-sized tungsten layers and wires , 2004 .

[8]  P. Sharma,et al.  Inclusions and inhomogeneities in strain gradient elasticity with couple stresses and related problems , 2005 .

[9]  M. Lazar,et al.  Dislocations in second strain gradient elasticity , 2006 .

[10]  C. Fressengeas,et al.  Elastic constitutive laws for incompatible crystalline media: the contributions of dislocations, disclinations and G-disclinations , 2013 .

[11]  A. Zaoui,et al.  Confrontation between Molecular Dynamics and micromechanical approaches to investigate particle size effects on the mechanical behaviour of polymer nanocomposites , 2013 .

[12]  N. Auffray,et al.  Matrix representations for 3D strain-gradient elasticity , 2012, 1301.1890.

[13]  E. Hervé-Luanco Elastic behavior of composites containing multi-layer coated particles with imperfect interface bonding conditions and application to size effects and mismatch in these composites , 2014 .

[14]  N. Cordero A strain gradient approach to the mechanics of micro and nanocrystals , 2011 .

[15]  P. Germain,et al.  The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure , 1973 .

[16]  A. Danescu,et al.  Continuum strain-gradient elasticity from discrete valence force field model for diamond-like crystals , 2012, International Journal of Fracture.

[17]  H. Gouin,et al.  Relation entre l'équation de l'énergie et l'équation du mouvement en théorie de Korteweg de la capillarité , 1985 .

[18]  Julien Yvonnet,et al.  An XFEM/level set approach to modelling surface/interface effects and to computing the size-dependent effective properties of nanocomposites , 2008 .

[19]  Q. He,et al.  Size-dependent effective elastic moduli of particulate composites with interfacial displacement and traction discontinuities , 2014 .

[20]  A. Hallil,et al.  From coherent to incoherent mismatched interfaces: A generalized continuum formulation of surface stresses , 2014 .

[21]  H. Shodja,et al.  Calculation of the Additional Constants for fcc Materials in Second Strain Gradient Elasticity: Behavior of a Nano-Size Bernoulli-Euler Beam With Surface Effects , 2012 .

[22]  H. Craighead Nanoelectromechanical systems. , 2000, Science.

[23]  Jianmin Qu,et al.  Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films , 2005 .

[24]  J. Yvonnet,et al.  Characterization of surface and nonlinear elasticity in wurtzite ZnO nanowires , 2012 .

[25]  P. Sharma,et al.  Erratum to: “Curvature-dependent surface energy and implications for nanostructures” [J. Mech. Phys. Solids 59 (2011) 2103–2115] , 2012 .

[26]  P. Seppecher,et al.  Edge Contact Forces and Quasi-Balanced Power , 1997, 1007.1450.

[27]  W. Müller,et al.  Determination of stiffness and higher gradient coefficients by means of the embedded-atom method , 2006 .

[28]  A. Zaoui,et al.  Micromechanical modeling of packing and size effects in particulate composites , 2007 .

[29]  N. Auffray,et al.  Symmetry classes for odd‐order tensors , 2014 .

[30]  Eleftherios E. Gdoutos,et al.  Elasticity size effects in ZnO nanowires--a combined experimental-computational approach. , 2008, Nano letters.

[31]  A. Danescu Hyper-pre-stress vs. strain-gradient for surface relaxation in diamond-like structures , 2012 .

[32]  Bhushan Lal Karihaloo,et al.  Theory of Elasticity at the Nanoscale , 2009 .

[33]  P. Steinmann,et al.  General imperfect interfaces , 2014 .

[34]  A. Danescu,et al.  Modeling macroscopic elasticity of porous silicon , 2009 .

[35]  N. Auffray,et al.  Symmetry classes for even-order tensors , 2013, 1301.1889.

[36]  L. Dormieux,et al.  Non linear homogenization approach of strength of nanoporous materials with interface effects , 2013 .

[37]  Patrick J. French,et al.  Characterizing size-dependent effective elastic modulus of silicon nanocantilevers using electrostatic pull-in instability , 2009 .

[38]  Paul Steinmann,et al.  On thermomechanical solids with boundary structures , 2010 .

[39]  A. Saúl,et al.  Elastic effects on surface physics , 2004 .

[40]  K. Gall,et al.  Bending and tensile deformation of metallic nanowires , 2008 .

[41]  Samuel Forest,et al.  Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage , 2009 .

[42]  P. Sharma,et al.  Curvature-dependent surface energy and implications for nanostructures , 2011 .

[43]  F. dell'Isola,et al.  Analytical continuum mechanics à la Hamilton–Piola least action principle for second gradient continua and capillary fluids , 2013, 1305.6744.

[44]  R. D. Mindlin Second gradient of strain and surface-tension in linear elasticity , 1965 .

[45]  R. D. Mindlin,et al.  On first strain-gradient theories in linear elasticity , 1968 .

[46]  Castrenze Polizzotto,et al.  A second strain gradient elasticity theory with second velocity gradient inertia – Part I: Constitutive equations and quasi-static behavior , 2013 .

[47]  Esteban P. Busso,et al.  First vs. second gradient of strain theory for capillarity effects in an elastic fluid at small length scales , 2011 .

[48]  P. Sharma,et al.  Surface energy, elasticity and the homogenization of rough surfaces , 2013 .

[49]  Zhi-Qiang Feng,et al.  Homogenization of layered elastoplastic composites: Theoretical results , 2012 .

[50]  Francesco dell’Isola,et al.  How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert” , 2012 .

[51]  R. Toupin Elastic materials with couple-stresses , 1962 .

[52]  N. Auffray Analytical expressions for odd-order anisotropic tensor dimension , 2014 .

[53]  Micro‐to‐macro transitions for continua with surface structure at the microscale , 2012 .

[54]  Jacques Besson,et al.  Non-Linear Mechanics of Materials , 2009 .

[55]  Paul Steinmann,et al.  On molecular statics and surface-enhanced continuum modeling of nano-structures , 2013 .

[56]  Francesco dell’Isola,et al.  Geometrically nonlinear higher-gradient elasticity with energetic boundaries , 2013 .

[57]  Morton E. Gurtin,et al.  Surface stress in solids , 1978 .

[58]  M. Gurtin,et al.  Addenda to our paper A continuum theory of elastic material surfaces , 1975 .

[59]  M. Roukes Nanoelectromechanical Systems , 2000, cond-mat/0008187.

[60]  J. Yvonnet,et al.  Finite element model of ionic nanowires with size-dependent mechanical properties determined by ab initio calculations , 2011 .

[61]  Paul Steinmann,et al.  Relationships between the admissible range of surface material parameters and stability of linearly elastic bodies , 2012 .

[62]  F. Amiot An Euler–Bernoulli second strain gradient beam theory for cantilever sensors , 2013 .

[63]  Victor A. Eremeyev,et al.  On the shell theory on the nanoscale with surface stresses , 2011 .

[64]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[65]  P. Ashby,et al.  High sensitivity deflection detection of nanowires. , 2010, Physical review letters.

[66]  P. Sharmaa,et al.  A novel atomistic approach to determine strain-gradient elasticity constants : Tabulation and comparison for various metals , semiconductors , silica , polymers and the ( Ir ) relevance for nanotechnologies , 2007 .

[67]  M. Lazar,et al.  On a theory of nonlocal elasticity of bi-Helmholtz type and some applications , 2006 .

[68]  Victor A. Eremeyev,et al.  On the spectrum and stiffness of an elastic body with surface stresses , 2011 .

[69]  A. McBride,et al.  A unified computational framework for bulk and surface elasticity theory: a curvilinear-coordinate-based finite element methodology , 2014 .

[70]  J. Qu,et al.  Interfacial excess energy, excess stress and excess strain in elastic solids: Planar interfaces , 2008 .

[71]  Samuel Forest,et al.  Elastoviscoplastic constitutive frameworks for generalized continua , 2003 .

[72]  H. Shodja,et al.  A combined first principles and analytical determination of the modulus of cohesion, surface energy, and the additional constants in the second strain gradient elasticity , 2013 .

[73]  Elias C. Aifantis,et al.  Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua , 2010 .

[74]  John Y. Shu,et al.  Scale-dependent deformation of porous single crystals , 1998 .