A spectral projection method for the simulation of complex three-dimensional rotating flows

Abstract In this paper, we present an efficient projection method to solve the three-dimensional time-dependent incompressible Navier–Stokes equations in primitive variables formulation using spectral approximations. This method is based on a modification of the algorithm proposed by Goda [J. Comp. Phys. 30 (1979) 76]. It brings an improvement by introducing a preliminary step for the pressure in order to allow a temporal evolution of the normal pressure gradient at the boundaries. Its efficiency is brought to the fore by comparison with the Goda's algorithm. The modified projection method is then applied to the simulation of complex three-dimensional flows in rotating cavities, involving either a throughflow or a differential rotation.

[1]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[2]  D. Lilly On the Instability of Ekman Boundary Flow , 1966 .

[3]  A. Faller,et al.  Investigations of stability and transition in rotating boundary layers. , 1966 .

[4]  Jie Shen,et al.  Hopf bifurcation of the unsteady regularized driven cavity flow , 1991 .

[5]  A. Batoul,et al.  Une méthode de résolution directe (pseudo-spectrale) du problème de Stokes 2D/3D instationnaire. Application à la cavité entraînée carrée , 1994 .

[6]  Harvey P. Greenspan,et al.  The Theory of Rotating Fluids. By H. P. GREENSPAN. Cambridge University Press, 1968. 327 pp. £5.50. , 1972, Journal of Fluid Mechanics.

[7]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[8]  C. W. Atta,et al.  Characteristics of Ekman boundary layer instabilities , 1970, Journal of Fluid Mechanics.

[9]  A. Sirivat Stability experiment of flow between a stationary and a rotating disk , 1991 .

[10]  Olivier Botella,et al.  On the solution of the Navier-Stokes equations using Chebyshev projection schemes with third-order accuracy in time , 1997 .

[11]  Omer Savas,et al.  Stability of Bödewadt flow , 1987, Journal of Fluid Mechanics.

[12]  R. Sani,et al.  On pressure boundary conditions for the incompressible Navier‐Stokes equations , 1987 .

[13]  R. Hide On source-sink flows in a rotating fluid , 1968, Journal of Fluid Mechanics.

[14]  Patrick Bontoux,et al.  Annular and spiral patterns in flows between rotating and stationary discs , 2001, Journal of Fluid Mechanics.

[15]  Philippe Gondret,et al.  Axisymmetric propagating vortices in the flow between a stationary and a rotating disk enclosed by a cylinder , 1999, Journal of Fluid Mechanics.

[16]  S. Orszag,et al.  Boundary conditions for incompressible flows , 1986 .

[17]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[18]  Splitting Techniques for the Unsteady Stokes Equations , 1998 .

[19]  Eric Serre,et al.  A three-dimensional pseudospectral method for rotating flows in a cylinder , 2001 .

[20]  K. Goda,et al.  A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows , 1979 .

[21]  William E. Pracht,et al.  A numerical method for calculating transient creep flows , 1971 .

[22]  J. Kan A second-order accurate pressure correction scheme for viscous incompressible flow , 1986 .

[23]  Patrick Bontoux,et al.  A pseudo-spectral solution of vorticity-stream function equations using the influence matrix technique , 1986 .

[24]  P. Moin,et al.  Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .

[25]  A. Faller Instability and transition of disturbed flow over a rotating disk , 1991, Journal of Fluid Mechanics.

[26]  S. Orszag,et al.  High-order splitting methods for the incompressible Navier-Stokes equations , 1991 .

[27]  John C. Strikwerda,et al.  The Accuracy of the Fractional Step Method , 1999, SIAM J. Numer. Anal..

[28]  Anthony Randriamampianina,et al.  An improved projection scheme applied to pseudospectral methods for the incompressible Navier-Stokes equations , 1998 .

[29]  E. Serre,et al.  Axisymmetric and three-dimensional instabilities in an Ekman boundary layer flow , 2001 .

[30]  Y. Takeda,et al.  Spiral and circular waves in the flow between a rotating and a stationary disk , 1999 .