Harnack type estimates for nonlinear elliptic systems and applications

[1]  F. Riesz,et al.  Sur Les Valeurs Moyennes Des Fonctions , 1930 .

[2]  Miron Nicolesco,et al.  Les fonctions polyharmoniques , 1936 .

[3]  Sur les valeurs moyennes des fonctions , 1944 .

[4]  A. Friedman ON n-METAHARMONIC FUNCTIONS AND HARMONIC FUNCTIONS OF INFINITE ORDER , 1957 .

[5]  R. Duffin,et al.  Note on polyharmonic functions , 1961 .

[6]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[7]  James Serrin,et al.  Local behavior of solutions of quasi-linear equations , 1964 .

[8]  K. Gowrisankaran Multiply superharmonic functions , 1975 .

[9]  Stefan Hildebrandt,et al.  On the Hölder continuity of weak solutions of quasilinear elliptic systems of second order , 1977 .

[10]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[11]  S. Lenhart,et al.  A System of Nonlinear Partial Differential Equations Arising in the Optimal Control of Stochastic Systems with Switching Costs , 1983 .

[12]  Peter Hess,et al.  On the eigenvalue problem for weakly coupled elliptic systems , 1983 .

[13]  Mariano Giaquinta,et al.  Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105 , 1984 .

[14]  P. Souganidis,et al.  A uniqueness result for viscosity solutions of second order fully nonlinear partial di , 1988 .

[15]  R. Jensen The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations , 1988 .

[16]  L. Caffarelli Interior a priori estimates for solutions of fully non-linear equations , 1989 .

[17]  D. G. Figueiredo,et al.  Maximum Principles for Linear Elliptic Systems , 1990 .

[18]  H. Ishii,et al.  Viscosity solutions for monotone systems of second-order elliptic PDES , 1991 .

[19]  Lihe Wang On the regularity theory of fully nonlinear parabolic equations: II , 1992 .

[20]  Hitoshi Ishii,et al.  Perron's method for monotone systems of second-order elliptic partial differential equations , 1992, Differential and Integral Equations.

[21]  Guido Sweers,et al.  Strong positivity in C(Ω¯) for elliptic systemsfor elliptic systems , 1992 .

[22]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[23]  S. Varadhan,et al.  The principal eigenvalue and maximum principle for second‐order elliptic operators in general domains , 1994 .

[24]  D. G. Figueredo Monotonicity and symmetry of solutions of elliptic systems in general domains , 1994 .

[25]  D. G. Figueiredo Monotonicity and symmetry of solutions of elliptic systems in general domains , 1994 .

[26]  P. Felmer Nonexistence and symmetry theorems for elliptic systems in RN , 1994 .

[27]  Guido Sweers,et al.  Weakly Coupled Elliptic Systems and Positivity , 1995 .

[28]  L. Caffarelli,et al.  Fully Nonlinear Elliptic Equations , 1995 .

[29]  Zhen-Qing Chen,et al.  Potential theory for elliptic systems , 1996 .

[30]  H. Grunau,et al.  Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions , 1997 .

[31]  Luis A. Caffarelli,et al.  On viscosity solutions of fully nonlinear equations with measurable ingredients , 1996 .

[32]  Mogens Bladt,et al.  A Markov modulated financial model , 1997 .

[33]  H. Grunau,et al.  Classical solutions for some higher order semilinear elliptic equations under weak growth conditions , 1997 .

[34]  Zhen-Qing Chen,et al.  Harnack Principle for Weakly Coupled Elliptic Systems , 1997 .

[35]  Existence results for bellman equations and maximum principles in unbounded domains , 1999 .

[36]  ON THE HARNACK PRINCIPLE FOR STRONGLY ELLIPTIC SYSTEMS WITH NONSMOOTH COEFFICIENTS , 1999 .

[37]  Mathematische,et al.  Strong positivity in C ( ! l ) for elliptic systems * , 1999 .

[38]  M. K. Ghosh,et al.  Harnack's inequality for cooperative weakly coupled elliptic systems , 1999 .

[39]  Michael G. Crandall,et al.  Lp- Theory for fully nonlinear uniformly parabolic equations , 2000 .

[40]  Nonlinear Financial Models: Finite Markov Modulation And Its Limits , 2002 .