Radio-Frequency Rectifier for Electromagnetic Energy Harvesting: Development Path and Future Outlook

The roadmap evolution and historical milestones of electromagnetic energy conversion techniques and related breakthroughs over the years are reviewed and presented with particular emphasis on low-density energy-harvest technologies. Electromagnetic sources responsible for the presence of ambient radio-frequency (RF) energy are examined and discussed. The effective use and recycling of such an ambient electromagnetic energy are the most relevant and critical issue for the current and future practicability of wireless energyharvesting devices and systems. In this paper, a set of performance criteria and development considerations, required to meet the need of applications of ambient electromagnetic energy harvesting, are also derived from the radiating source analysis. The criteria can be calculated from a simple measurement of the I-V nonlinear behavior of RF rectification devices such as diodes and transistors, as well as linear frequency behavior (S-parameters). The existing rectifying devices are then reviewed in light of the defined performance criteria. Finally, a technological outlook of the performances that can be expected from different device technologies is assessed and discussed. Since the proposed spindiode technology would present the most promising device platform in the development of the most useful ambient energy harvesters, a special highlight of this disruptive scheme is provided in the presentation of this work.

[1]  D. Kahng,et al.  Gold-epitaxial silicon high-frequency diodes , 1964 .

[2]  H. Kazemi,et al.  Advances in schottky rectifier performance , 2007, IEEE Microwave Magazine.

[3]  Russell S. Ohl,et al.  Properties of ionic bombarded silicon , 1952 .

[4]  H.A.H. Boot,et al.  Historical notes on the cavity magnetron , 1976, IEEE Transactions on Electron Devices.

[5]  Erwin Schrödinger The fundamental idea of wave mechanics , 1999 .

[6]  H. F. Dylla,et al.  John Ambrose Fleming and the beginning of electronics , 2005 .

[7]  J. Schulman,et al.  Quantum tunneling Sb-heterostructure millimeter-wave diodes , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[8]  H. V. Shurmer Recent developments in silicon radar crystals , 1964 .

[9]  Ke Wu,et al.  Towards Low-Power High-Efficiency RF and Microwave Energy Harvesting , 2014, IEEE Transactions on Microwave Theory and Techniques.

[10]  Sachit Grover,et al.  Engineering the current-voltage characteristics of metal-insulator-metal diodes using double-insulator tunnel barriers , 2012 .

[11]  Kinder,et al.  Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. , 1995, Physical review letters.

[12]  D. P. C. Thackeray Communications: When tubes beat crystals: Early radio detectors: Although crystals were superior, tubes won out ¿ Until the solid-state revolution reversed tradition with a different kind of `crystal¿ detector , 1983 .

[13]  P. Anderson Local moments and localized states , 1978 .

[14]  Ferdinand Braun,et al.  Ueber die Stromleitung durch Schwefelmetalle , 1875 .

[15]  Werner Heisenberg The development of quantum mechanics , 1984 .

[16]  A. Fert Nobel Lecture: Origin, development, and future of spintronics , 2008 .

[17]  Edoardo Amaldi,et al.  Artificial Radioactivity Produced by Neutron Bombardment , 1934 .

[18]  L. Néel,et al.  Magnetism and local molecular field. , 1971, Science.

[19]  J. Karlovský,et al.  The curvature coefficient of germanium tunnel and backward diodes , 1967 .

[20]  A. Schuster XXXVI. On unilateral conductivity , 1874 .

[21]  P. K. Bondyopadhyay,et al.  Sir J.C. Bose diode detector received Marconi's first transatlantic wireless signal of December 1901 (the "Italian Navy Coherer" Scandal Revisited) , 1998, Proc. IEEE.

[22]  Johan Åkerman,et al.  Toward a Universal Memory , 2005, Science.

[23]  L. Nordheim Zur Theorie der thermischen Emission und der Reflexion von Elektronen an Metallen , 1928 .

[24]  Peng Zeng,et al.  Kinetic Energy Harvesting Using Piezoelectric and Electromagnetic Technologies—State of the Art , 2010, IEEE Transactions on Industrial Electronics.

[25]  Majid Ezzati,et al.  HOW ENVIRONMENTAL HEALTH RISKS CHANGE WITH DEVELOPMENT: The Epidemiologic and Environmental Risk Transitions Revisited , 2005 .

[26]  S. Rockwell,et al.  Characterization and Modeling of Metal/Double-Insulator/Metal Diodes for Millimeter Wave Wireless Receiver Applications , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[27]  E. Merzbacher,et al.  The Early History of Quantum Tunneling , 2002 .

[28]  Jean-Marie Dilhac Edouard Branly, the Coherer, and the Branly effect [History of Communications] , 2009, IEEE Commun. Mag..

[29]  Kenneth M. Evenson,et al.  Extension of absolute frequency measurements to 148 THz: Frequencies of the 2.0‐ and 3.5‐μm Xe laser , 1975 .

[30]  F. Carassa On the 80th anniversary of the first transatlantic radio signal , 1982, IEEE Antennas and Propagation Society Newsletter.

[31]  Jan T. Bialasiewicz,et al.  Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey , 2006, IEEE Transactions on Industrial Electronics.

[32]  W. Brinkman,et al.  Tunneling Conductance of Asymmetrical Barriers , 1970 .

[33]  Anil Kantak,et al.  Solar Brightness Temperature and Corresonding Antenna Noise Temperature at Microwave Frequencies , 2009 .

[35]  M. P. Lepselter,et al.  B.S.T.J. briefs: Planar epitaxial silicon schottky barrier diodes , 1965 .

[36]  Nevill Francis Mott,et al.  The Electrical Conductivity of Transition Metals , 1936 .

[37]  P. Kusch,et al.  The Magnetic Moment of the Electron , 1948 .

[38]  T. Reveyrand,et al.  High-Efficiency Harmonically Terminated Diode and Transistor Rectifiers , 2012, IEEE Transactions on Microwave Theory and Techniques.

[39]  Ze Zhang,et al.  Sub-Micron Area Heterojunction Backward Diode Millimeter-Wave Detectors With 0.18 ${\rm pW/Hz}^{1/2}$ Noise Equivalent Power , 2011, IEEE Microwave and Wireless Components Letters.

[40]  S. Yuasa,et al.  Spin-torque diode effect in magnetic tunnel junctions , 2005, Nature.

[41]  D. N. McQuiddy,et al.  Monolithic Microwave Integrated Circuits: An Historical Perspective , 1984 .

[42]  Bob van Loon Radar 101: Celebrating 101 Years of Development , 2005, Proc. IEEE.

[43]  W. Brattain,et al.  Surface Properties of Semiconductors. , 1957, Science.

[44]  A Fukushima,et al.  Highly sensitive nanoscale spin-torque diode. , 2014, Nature materials.

[45]  Kazuhiko Matsumoto,et al.  Nb/Nb Oxide-Based Planar-Type Metal/Insulator/Metal (MIM) Diodes Fabricated by Atomic Force Microscope (AFM) Nano-Oxidation Process , 1997 .

[46]  D. P. C. Thackeray When tubes beat crystals: early radio detectors , 1983, IEEE Spectrum.

[47]  Michael T. Toman,et al.  Energy and Economic Development: An Assessment of the State of Knowledge , 2003 .

[48]  Nebojsa Nakicenovic,et al.  Global Energy Assessment (GEA): Energy Primer , 2012 .

[49]  L.F. Fuller The Design of Poulsen Arc Converters for Radio Telegraphy , 1919, Proceedings of the Institute of Radio Engineers.

[50]  G. L. Pearson,et al.  History of Semiconductor Research , 1955, Proceedings of the IRE.

[51]  Interfacial capacitance effects in magnetic tunneling junctions , 2001 .

[52]  K. Evenson,et al.  Characteristics of tungsten-nickel point contact diodes used as laser harmonic-generator mixers , 1974 .

[53]  M. Julliere Tunneling between ferromagnetic films , 1975 .

[54]  J. Bardeen Research Leading to Point-Contact Transistor. , 1957, Science.

[55]  J.S. Belrose Reginald Aubrey Fessenden and the birth of wireless telephony , 2002, IEEE Antennas and Propagation Magazine.

[56]  M. Guarnieri The Age of Vacuum Tubes: Early Devices and the Rise of Radio Communications [Historical] , 2012, IEEE Industrial Electronics Magazine.

[57]  James E. Brittain Electrical Engineering Hall of Fame: Lee de Forest , 2005, Proceedings of the IEEE.

[58]  Shufeng Zhang Spin-dependent surface screening in ferromagnets and magnetic tunnel junctions , 1999 .

[59]  H. H. Beverage,et al.  Early History of the Antennas and Propagation Field until the End of World War I, Part I - Antennas , 1962, Proceedings of the IRE.

[60]  A. Cowley,et al.  Quantitative Comparison of Solid-State Microwave Detectors , 1966 .

[61]  P. W. Anderson,et al.  Local moments and localized States. , 1978, Science.

[62]  Xinen Zhu,et al.  Theoretical Analysis of RF-DC Conversion Efficiency for Class-F Rectifiers , 2014, IEEE Transactions on Microwave Theory and Techniques.

[63]  Kai Chang,et al.  Theoretical and experimental development of 10 and 35 GHz rectennas , 1992 .

[64]  Stephen Berard,et al.  Implications of Historical Trends in the Electrical Efficiency of Computing , 2011, IEEE Annals of the History of Computing.

[65]  J. Xiao,et al.  Interfacial capacitance effects in magnetic tunneling junctions , 2001 .

[66]  J. Schulman,et al.  Sb-Heterostructure Millimeter-Wave Detectors With Reduced Capacitance and Noise Equivalent Power , 2008, IEEE Electron Device Letters.

[67]  Z. Alferov,et al.  Nobel Lecture: The double heterostructure concept and its applications in physics, electronics, and technology , 2001 .

[68]  J. H. Scaff,et al.  Development of silicon crystal rectifiers for microwave radar receivers , 1947 .

[69]  H. Farhangi,et al.  The path of the smart grid , 2010, IEEE Power and Energy Magazine.

[70]  Richard M. Osgood,et al.  Planar Metal-Insulator-Metal Diodes Based on the Nb/Nb2O5/X Material System , 2013 .

[71]  Electrons in Glass , 1978 .

[72]  L. Esaki New Phenomenon in Narrow Germanium p-n Junctions , 1958 .

[73]  K. Balakrishnan,et al.  Energy and human health. , 2013, Annual review of public health.

[74]  S. Yuasa,et al.  Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions , 2004, Nature materials.

[75]  Simon,et al.  RECENT DEVELOPMENTS IN THE WORK OF THE FEDERAL TELEGRAPH COMPANY. DISCUSSION , 1913 .

[76]  M. P. Lepselter,et al.  Silicon schottky barrier diode with near-ideal I-V characteristics , 1968 .

[78]  S. Hales,et al.  Estimating the Global Public Health Implications of Electricity and Coal Consumption , 2011, Environmental health perspectives.

[79]  G. Breit The Magnetic Moment of the Electron. , 1928, Nature.

[80]  A. Fert,et al.  The emergence of spin electronics in data storage. , 2007, Nature materials.

[81]  M. Peckerar,et al.  Geometry enhanced asymmetric rectifying tunneling diodes , 2010 .

[82]  John G. Simmons,et al.  Potential Barriers and Emission‐Limited Current Flow Between Closely Spaced Parallel Metal Electrodes , 1964 .

[83]  Steve Maas Armstrong and the Superheterodyne: A Historical Look at the Mixer , 2013, IEEE Microwave Magazine.

[84]  Z. Popović,et al.  THz Metrology and Instrumentation , 2011, IEEE Transactions on Terahertz Science and Technology.

[85]  M. Green Thin-film solar cells: review of materials, technologies and commercial status , 2007 .