Divergence-Free Wavelet Analysis of Turbulent Flows

In this paper we study the application of divergence-free wavelet bases for the analysis of incompressible turbulent flows and perform several experiments. In particular, we analyze various nominally incompressible fields and study the influence of compressible perturbations due to experimental and computational errors. In addition, we investigate the multiscale structure of modes obtained from the Proper Orthogonal Decomposition (POD) method. Finally, we study the divergence-free wavelet compression of turbulent flow data and present results on the energy recovery. Moreover, we utilize wavelet decompositions to investigate the regularity of turbulent flow fields in certain non-classical function spaces, namely Besov spaces. In our experiments, we have observed significantly higher Besov regularity than Sobolev regularity, which indicates the potential for adaptive numerical simulations.

[1]  Wolfgang Dahmen,et al.  Wavelets on Manifolds I: Construction and Domain Decomposition , 1999, SIAM J. Math. Anal..

[2]  R. DeVore,et al.  Besov regularity for elliptic boundary value problems , 1997 .

[3]  Jacques Lewalle,et al.  Wavelet transforms of the Navier-Stokes equations and the generalized dimensions of turbulence , 1993 .

[4]  Ronald A. DeVore,et al.  On the size and smoothness of solutions to nonlinear hyperbolic conservation laws , 1996 .

[5]  Albert Cohen,et al.  Wavelet Methods for Second-Order Elliptic Problems, Preconditioning, and Adaptivity , 1999, SIAM J. Sci. Comput..

[6]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[7]  Claudio Canuto,et al.  The wavelet element method. Part I: Construction and analysis. , 1997 .

[8]  Karsten Urban,et al.  On divergence-free wavelets , 1995, Adv. Comput. Math..

[9]  C. Meneveau Analysis of turbulence in the orthonormal wavelet representation , 1991, Journal of Fluid Mechanics.

[10]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[11]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[12]  Wolfgang Dahmen,et al.  Element-by-Element Construction of Wavelets Satisfying Stability and Moment Conditions , 1999, SIAM J. Numer. Anal..

[13]  M. Farge,et al.  Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis , 1999 .

[14]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[15]  W. Dahmen,et al.  Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .

[16]  Karsten Urban,et al.  Wavelet bases in H(div) and H(curl) , 2001, Math. Comput..

[17]  Michael Griebel,et al.  Adaptive Wavelet Solvers for the Unsteady Incompressible Navier-Stokes Equations , 2000 .

[18]  M. Farge Wavelet Transforms and their Applications to Turbulence , 1992 .

[19]  Pierre Gilles Lemarié-Rieusset Analyses multi-résolutions non orthogonales, commutation entre projecteurs et derivation et ondelettes vecteurs à divergence nuIIe , 1992 .

[20]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Gal Berkooz,et al.  Coherent structures in random media and wavelets , 1992 .

[22]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods for Saddle Point Problems - Optimal Convergence Rates , 2002, SIAM J. Numer. Anal..

[23]  Wolfgang Dahmen,et al.  Composite wavelet bases for operator equations , 1999, Math. Comput..