Deterministic Fully Dynamic Data Structures for Vertex Cover and Matching

We present the first deterministic data structures for maintaining approximate minimum vertex cover and maximum matching in a fully dynamic graph $G = (V,E)$, with $|V| = n$ and $|E| =m$, in $o(\sqrt{m}\,)$ time per update. In particular, for minimum vertex cover we provide deterministic data structures for maintaining a $(2+\eps)$ approximation in $O(\log n/\eps^2)$ amortized time per update. For maximum matching, we show how to maintain a $(3+\eps)$ approximation in $O(\min(\sqrt{n}/\epsilon, m^{1/3}/\eps^2))$ {\em amortized} time per update, and a $(4+\eps)$ approximation in $O(m^{1/3}/\eps^2)$ {\em worst-case} time per update. Our data structure for fully dynamic minimum vertex cover is essentially near-optimal and settles an open problem by Onak and Rubinfeld from STOC' 2010.

[1]  Aleksander Madry,et al.  Navigating Central Path with Electrical Flows: From Flows to Matchings, and Back , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[2]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[3]  Piotr Sankowski,et al.  Faster dynamic matchings and vertex connectivity , 2007, SODA '07.

[4]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[5]  Shay Solomon,et al.  Simple deterministic algorithms for fully dynamic maximal matching , 2012, STOC '13.

[6]  Ran Duan,et al.  Approximating Maximum Weight Matching in Near-Linear Time , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[7]  Piotr Sankowski,et al.  Maximum matchings via Gaussian elimination , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[8]  Subhash Khot,et al.  Vertex cover might be hard to approximate to within 2-/spl epsiv/ , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[9]  Sandeep Sen,et al.  Fully Dynamic Maximal Matching in O (log n) Update Time , 2011, FOCS.

[10]  Richard Peng,et al.  Fully Dynamic $(1+\epsilon)$-Approximate Matchings , 2013, 1304.0378.

[11]  Errol L. Lloyd,et al.  Fully Dynamic Maintenance of Vertex Cover , 1993, WG.

[12]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[13]  Krzysztof Onak,et al.  Maintaining a large matching and a small vertex cover , 2010, STOC '10.

[14]  Subhash Khot,et al.  Vertex cover might be hard to approximate to within 2-/spl epsiv/ , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[15]  Amir Abboud,et al.  Popular Conjectures Imply Strong Lower Bounds for Dynamic Problems , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.