Spin transitions in the Fe x Mn 1-x S 2 system

Pressure-induced spin transitions of the ${\mathrm{Fe}}^{2+}$ and the ${\mathrm{Mn}}^{2+}$ ions in the ${\mathrm{Fe}}_{x}{\mathrm{Mn}}_{1\ensuremath{-}x}{\mathrm{S}}_{2}$ system are investigated using calculations based on density-functional theory within the generalized gradient approximation $(\mathrm{GGA})+U$ formalism. ${\mathrm{MnS}}_{2}$ shows a transition from a high-spin to a low-spin state at high pressure. The transition pressures decrease with increasing Fe content, and at high Fe content, transition pressures approaching zero are obtained. However, the volume change at the transition remains remarkably constant as long as both Fe and Mn participate.

[1]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[2]  M. Eremets,et al.  Electronic and structural transitions in NdFeO3 orthoferrite under high pressures , 2003 .

[3]  T. Chattopadhyay,et al.  First order antiferromagnetic phase transition in MnS2 , 1984 .

[4]  V. A. Sarkisyan,et al.  Transition from the antiferromagnetic to a nonmagnetic state in FeBO3 under high pressure , 2001 .

[5]  Chattopadhyay,et al.  Spin correlation in the frustrated antiferromagnet MnS2 above the Néel temperature. , 1991, Physical review. B, Condensed matter.

[6]  M. Lin,et al.  Antiferromagnetic transitions in MnS2 and MnTe2 , 1968 .

[7]  J. Luitz,et al.  Itinerant metamagnetism and possible spin transition in LaCoO3 by temperature/hole doping , 2001, cond-mat/0104308.

[8]  Zeng,et al.  Density-functional calculation of the electronic structure and equilibrium geometry of iron pyrite (FeS2). , 1994, Physical review. B, Condensed matter.

[9]  P. Ngoepe,et al.  Atomistic simulation of the structure and elastic properties of pyrite (FeS2) as a function of pressure , 2003 .

[10]  O. Kahn,et al.  Spin-Transition Polymers: From Molecular Materials Toward Memory Devices , 1998 .

[11]  A. Shimizu,et al.  Bonding Schemes for Compounds with the Pyrite, Marcasite, and Arsenopyrite Type Structures. , 1970 .

[12]  E. Stevens,et al.  Experimental observation of the effect of crystal field splitting on the electron density distribution of iron pyrite , 1980 .

[13]  E. L. Amma,et al.  Investigation of the bonding mechanism in pyrite using the Mössbauer effect and X-ray crystallography , 1976 .

[14]  D. Eastman,et al.  Localized and Bandlike Valence-Electron States in FeS 2 and NiS 2 , 1974 .

[15]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[16]  T. Lorenz,et al.  Evidence for a low-spin to intermediate-spin state transition in LaCoO 3 , 2002, cond-mat/0205479.

[17]  J. M. Hastings,et al.  Antiferromagnetic Structures of MnS 2 , MnSe 2 , and MnTe 2 , 1959 .

[18]  Jürgen Hafner,et al.  Magnetism and magneto-structural effects in transition-metal sulphides , 1999 .

[19]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[20]  K. Koepernik,et al.  Full-potential band-structure calculation of iron pyrite , 1999 .

[21]  Georg Kresse,et al.  Electronic correlation effects in transition-metal sulfides , 2003 .

[22]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[23]  T. Chattopadhyay,et al.  High pressure X-ray diffraction study on the structural phase transition in MnS2 , 1986 .

[24]  Ofer Naaman,et al.  Pressure-induced breakdown of a correlated system: The progressive collapse of the Mott-Hubbard state inRFeO3 , 2001 .

[25]  H. Tributsch,et al.  Electronic structure of FeS 2 : The crucial role of electron-lattice interaction , 1998 .

[26]  R. Jeanloz,et al.  High pressure collapse of magnetism in Fe0.94O: Mössbauer spectroscopy beyond 100 GPa , 1997 .

[27]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[28]  S. Russo,et al.  First-principles studies of the structural and electronic properties of pyrite FeS 2 , 2002 .

[29]  T. Chattopadhyay,et al.  High pressure X-ray diffraction study on p-FeS2, m-FeS2 and MnS2 to 340 kbar: A possible high spin-low spin transition in MnS2 , 1985 .

[30]  Internal Relaxation, Band Gaps and Elastic Constant Calculations of FeS2 , 1999 .

[31]  G. McIntyre,et al.  X-ray and neutron diffraction study of the crystal structure of MnS2 , 1992 .

[32]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[33]  B. Malaman,et al.  Pressure-induced metallization and collapse of the antiferromagnetic state ofMnTe2 , 2001 .

[34]  J. Goodenough,et al.  Bond-length fluctuations and the spin-state transition inLCoO3(L=La,Pr, and Nd) , 2004 .

[35]  H. G. Drickamer,et al.  Effect of pressure on the spin state of iron(II) in manganese(IV) sulfide , 1971 .

[36]  J. M. Hastings,et al.  First-order antiferromagnetic phase transition in MnS2 , 1976 .

[37]  H. Mao,et al.  Equation of state, elasticity, and shear strength of pyrite under high pressure , 2002 .

[38]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[39]  R. Pollard,et al.  A 57Fe Mossbauer study of spin arrangements in antiferromagnetic MnS2, MnSe2 and MnTe2 , 1983 .

[40]  Sang-Wook Cheong,et al.  Structural phenomena associated with the spin-state transition in LaCoO 3 , 2002, cond-mat/0204636.

[41]  Guillaume Fiquet,et al.  Iron Partitioning in Earth's Mantle: Toward a Deep Lower Mantle Discontinuity , 2003, Science.

[42]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[43]  R. Cohen,et al.  Magnetic Collapse in Transition Metal Oxides at High Pressure: Implications for the Earth , 1997, Science.