Continuous lattice effect algebras admitting order-continuous states

We prove that a necessary and sufficient condition for the existence of a faithful ((o)-continuous) state on a complete modular atomic effect algebra E is the separability of E . Moreover, we generalize the famous Kaplansky theorem about order continuity of complemented complete modular lattices onto complete modular atomic effect algebras. Some other statements about the algebraic structure of modular effect algebras are shown. We prove that every chain and every block in an irreducible complete modular atomic effect algebra is finite. Moreover, every complete atomic modular effect algebra is compactly generated by finite elements.

[1]  Z. Riecanová,et al.  Subalgebras, Intervals, and Central Elements of Generalized Effect Algebras , 1999 .

[2]  Zdenka Riecanová,et al.  Topological and order-topological orthomodular lattices , 1992, Bulletin of the Australian Mathematical Society.

[3]  B. Riecan,et al.  The Kurzweil integral in ordered spaces , 1997 .

[4]  R. J. Greechie,et al.  The center of an effect algebra , 1995 .

[5]  G. Grätzer General Lattice Theory , 1978 .

[6]  Zdenka Riečanová ON ORDER CONTINUITY OF QUANTUM STRUCTURES AND THEIR HOMOMORPHISMS , 1996 .

[7]  Zdenka Riečanová ORTHOGONAL SETS IN EFFECT ALGEBRAS , 2001 .

[8]  Sylvia Pulmannová,et al.  Orthomodular structures as quantum logics , 1991 .

[9]  Zdenka Riečanová Order-topological separable complete modular ortholattices admit order continuous faithful valuations , 1998 .

[10]  D. Foulis,et al.  Effect algebras and unsharp quantum logics , 1994 .

[11]  Zdenka Riečanová,et al.  Generalization of Blocks for D-Lattices and Lattice-Ordered Effect Algebras , 2000 .

[12]  Irving Kaplansky,et al.  Any Orthocomplemented Complete Modular Lattice is a Continuous Geometry , 1955 .

[13]  Sylvia Pulmannová,et al.  BCK-algebras in Applications , 2000 .

[14]  Zdenka Riečanová Lattice effect algebras with (o)-continuous faithful valuations , 2001, Fuzzy Sets Syst..

[15]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[16]  Ulrich Höhle,et al.  Non-classical logics and their applications to fuzzy subsets : a handbook of the mathematical foundations of fuzzy set theory , 1995 .

[17]  Zdenka Riečanová,et al.  Contraexamples in difference posets and orthoalgebras , 1994 .

[18]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .

[19]  Richard J. Greechie,et al.  Orthomodular Lattices Admitting No States , 1971 .

[20]  D. Mundici,et al.  Algebraic Foundations of Many-Valued Reasoning , 1999 .

[21]  Marcel Erné,et al.  Order-topological complete orthomodular lattices , 1995 .

[22]  B. Riecan,et al.  Integral, Measure, and Ordering , 1997 .

[23]  Gejza Jenča Blocks of homogeneous effect algebras , 2001 .