Using Deep Learning to Predict Complex Systems: A Case Study in Wind Farm Generation
暂无分享,去创建一个
[1] Yoshua Bengio,et al. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.
[2] L Marino Daniel,et al. Simultaneous generation-classification using LSTM , 2016 .
[3] Yoram Singer,et al. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..
[4] Yoshua Bengio,et al. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling , 2014, ArXiv.
[5] Francisco Beltran-Carbajal,et al. Control Neuronal en Línea para Regulación y Seguimiento de Trayectorias de Posición para un Quadrotor , 2017 .
[6] Rob J Hyndman,et al. Another look at measures of forecast accuracy , 2006 .
[7] C. Willmott,et al. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance , 2005 .
[8] Jürgen Schmidhuber,et al. Long Short-Term Memory , 1997, Neural Computation.
[9] Sepp Hochreiter,et al. Self-Normalizing Neural Networks , 2017, NIPS.
[10] Yoshua Bengio,et al. Gradient-based learning applied to document recognition , 1998, Proc. IEEE.
[11] Nitish Srivastava,et al. Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..
[12] Geoffrey E. Hinton,et al. On the importance of initialization and momentum in deep learning , 2013, ICML.