Radio galaxies in ZFOURGE/NMBS: no difference in the properties of massive galaxies with and without radio-AGN out to z = 2.25

In order to reproduce the high-mass end of the galaxy mass distribution, some process must be responsible for the suppression of star formation in the most massive of galaxies. Commonly active galactic nuclei (AGN) are invoked to fulfil this role, but the exact means by which they do so is still the topic of much debate, with studies finding evidence for both the suppression and enhancement of star formation in AGN hosts. Using the ZFOURGE (FourStar Galaxy Evolution) and NMBS(Newfirm Medium Band Survey) galaxy surveys, we investigate the host galaxy properties of a mass-limited (M >= 10(10.5)M(circle dot)), high-luminosity (L-1.4 > 10(24) W Hz(-1)) sample of radio-loud AGN to a redshift of z = 2.25. In contrast to low-redshift studies, which associate radio-AGN activity with quiescent hosts, we find that the majority of z > 1.5 radio-AGN are hosted by star-forming galaxies. Indeed, the stellar populations of radio-AGN are found to evolve with redshift in a manner that is consistent with the non-AGN mass-similar galaxy population. Interestingly, we find that the radio-AGN fraction is constant across a redshift range of 0.25 = z < 2.25, perhaps indicating that the radio-AGN duty cycle has little dependence on redshift or galaxy type. We do however see a strong relation between the radio-AGN fraction and stellar mass, with radio-AGN becoming rare below similar to 10(10.5)M(circle dot) or a halo mass of 10(12)M(circle dot). This halo-mass threshold is in good agreement with simulations that initiate radio-AGN feedback at this mass limit. Despite this, we find that radio-AGN host star formation rates are consistent with the non-AGN mass-similar galaxy sample, suggesting that while radio-AGN are in the right place to suppress star formation in massive galaxies they are not necessarily responsible for doing so.

[1]  M. Longair,et al.  Stellar populations in distant radio galaxies , 1984 .

[2]  S. More,et al.  Satellite kinematics – II. The halo mass–luminosity relation of central galaxies in SDSS , 2008, 0807.4532.

[3]  M. Dickinson,et al.  NO EVIDENCE FOR EVOLUTION IN THE FAR-INFRARED–RADIO CORRELATION OUT TO z ∼ 2 IN THE EXTENDED CHANDRA DEEP FIELD SOUTH , 2011, 1102.3249.

[4]  J. L. Donley,et al.  IDENTIFYING LUMINOUS ACTIVE GALACTIC NUCLEI IN DEEP SURVEYS: REVISED IRAC SELECTION CRITERIA , 2012, 1201.3899.

[5]  L. Dressel A statistical study of radio emission in E and S0 galaxies , 1981 .

[6]  On the prevalence of radio‐loud active galactic nuclei in brightest cluster galaxies: implications for AGN heating of cooling flows , 2006, astro-ph/0611197.

[7]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[8]  R. Morganti,et al.  Tracing the extreme interplay between radio jets and the ISM in IC 5063 , 2013, 1302.2236.

[9]  S. E. Persson,et al.  DISCOVERY OF LYMAN BREAK GALAXIES AT z ∼ 7 FROM THE zFourGE SURVEY , 2013, 1304.4227.

[10]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[11]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[12]  P. Best,et al.  Effect of the interactions and environment on nuclear activity , 2012, 1212.4836.

[13]  M. Jarvis,et al.  Mergers as triggers for nuclear activity: a near-IR study of the close environment of AGN in the VISTA-VIDEO survey , 2013, 1312.1699.

[14]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[15]  D. Wake,et al.  3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE–MASS DISTRIBUTION SINCE z = 3 , 2014, 1404.2844.

[16]  B. Lundgren,et al.  THE NEWFIRM MEDIUM-BAND SURVEY: PHOTOMETRIC CATALOGS, REDSHIFTS, AND THE BIMODAL COLOR DISTRIBUTION OF GALAXIES OUT TO z ∼ 3 , 2011, 1105.4609.

[17]  B. Lundgren,et al.  GALAXY CLUSTERING IN THE NEWFIRM MEDIUM BAND SURVEY: THE RELATIONSHIP BETWEEN STELLAR MASS AND DARK MATTER HALO MASS AT 1 < z < 2 , 2010, 1012.1317.

[18]  S. Lilly,et al.  Surface photometry of powerful radio galaxies. II: Relations with the radio, optical, and clustering properties , 1987 .

[19]  D. Ballantyne,et al.  A TALE OF TWO POPULATIONS: THE CONTRIBUTION OF MERGER AND SECULAR PROCESSES TO THE EVOLUTION OF ACTIVE GALACTIC NUCLEI , 2012, 1203.5117.

[20]  P. Hopkins,et al.  A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity , 2007, 0706.1243.

[21]  W. Keel,et al.  The Spiral Host Galaxy of the Double Radio Source 0313−192 , 2006, astro-ph/0608086.

[22]  U. Waterloo,et al.  AGN feedback in clusters: Shock and sound heating , 2013, 1304.0400.

[23]  J. Tinker,et al.  THE CONNECTION BETWEEN GALAXIES AND DARK MATTER STRUCTURES IN THE LOCAL UNIVERSE , 2012, 1207.2160.

[24]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[25]  Adi Nusser,et al.  THE MASSIVE-BLACK-HOLE–VELOCITY-DISPERSION RELATION AND THE HALO BARYON FRACTION: A CASE FOR POSITIVE ACTIVE GALACTIC NUCLEUS FEEDBACK , 2010, 1004.0857.

[26]  S. E. Persson,et al.  EXPLORING THE z = 3–4 MASSIVE GALAXY POPULATION WITH ZFOURGE: THE PREVALENCE OF DUSTY AND QUIESCENT GALAXIES , 2014, 1405.1048.

[27]  D. Crenshaw,et al.  The Host Galaxies of Narrow-Line Seyfert 1 Galaxies: Evidence for Bar-Driven Fueling , 2003, astro-ph/0306404.

[28]  S. E. Persson,et al.  FIRST RESULTS FROM Z −FOURGE: DISCOVERY OF A CANDIDATE CLUSTER AT z = 2.2 IN COSMOS , 2011, 1112.2691.

[29]  D. J. Saikia,et al.  MOLECULAR CO(1–0) GAS IN THE z ∼ 2 RADIO GALAXY MRC 0152-209 , 2011, 1105.0739.

[30]  Xiaohu Yang,et al.  THE SUBHALO–SATELLITE CONNECTION AND THE FATE OF DISRUPTED SATELLITE GALAXIES , 2008, 0808.2526.

[31]  E. Lenc,et al.  Star formation in the ultraluminous infrared galaxy F00183-7111 , 2014, 1401.5121.

[32]  O. I. Wong,et al.  The green valley is a red herring: Galaxy Zoo reveals two evolutionary pathways towards quenching of star formation in early-and late-type galaxies , 2014, 1402.4814.

[33]  W. Hartley,et al.  The prevalence of AGN feedback in massive galaxies at z ≈ 1 , 2013, 1307.0502.

[34]  Ž. Ivezić,et al.  A CLOSER VIEW OF THE RADIO–FIR CORRELATION: DISENTANGLING THE CONTRIBUTIONS OF STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY , 2010, 1010.0435.

[35]  M. Dopita,et al.  Jet-induced Emission-Line Nebulosity and Star Formation in the High-Redshift Radio Galaxy 4C 41.17 , 1999, astro-ph/9909218.

[36]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[37]  S. Wuyts,et al.  FIREWORKS U38-to-24 μm Photometry of the GOODS Chandra Deep Field-South: Multiwavelength Catalog and Total Infrared Properties of Distant Ks-selected Galaxies , 2008 .

[38]  W. Percival,et al.  The formation of cluster elliptical galaxies as revealed by extensive star formation , 2003, Nature.

[39]  H. Rix,et al.  Toward an Understanding of the Rapid Decline of the Cosmic Star Formation Rate , 2005, astro-ph/0502246.

[40]  Ž. Ivezić,et al.  The host galaxies of radio-loud active galactic nuclei: mass dependences, gas cooling and active galactic nuclei feedback , 2005 .

[41]  R. Somerville,et al.  CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT , 2009, 0903.4682.

[42]  University College London,et al.  CO(1–0) survey of high-z radio galaxies: alignment of molecular halo gas with distant radio sources , 2013, 1312.4785.

[43]  S. Borgani,et al.  First Results from the X-Ray and Optical Survey of the Chandra Deep Field South , 2000, astro-ph/0007240.

[44]  S. E. Persson,et al.  THE DISTRIBUTION OF SATELLITES AROUND MASSIVE GALAXIES AT 1 < z < 3 IN ZFOURGE/CANDELS: DEPENDENCE ON STAR FORMATION ACTIVITY , 2014, 1406.6056.

[45]  F. Walter,et al.  Cool Gas in High-Redshift Galaxies , 2013, 1301.0371.

[46]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[47]  M. Véron-Cetty,et al.  Are all radio galaxies genuine ellipticals , 2001 .

[48]  R. Norris,et al.  AGN feedback works both ways , 2013, 1306.6468.

[49]  H. Rix,et al.  THE STAR FORMATION HISTORY OF MASS-SELECTED GALAXIES IN THE COSMOS FIELD , 2010, 1011.6370.

[50]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[51]  S. Veilleux,et al.  J1649+2635: A Grand-Design Spiral with a Large Double-Lobed Radio Source , 2014, 1410.8520.

[52]  S. E. Persson,et al.  GALAXY STELLAR MASS FUNCTIONS FROM ZFOURGE/CANDELS: AN EXCESS OF LOW-MASS GALAXIES SINCE z = 2 AND THE RAPID BUILDUP OF QUIESCENT GALAXIES , 2013, 1309.5972.

[53]  Mullard Space Science Laboratory,et al.  The Star Formation History of the Universe as Revealed by Deep Radio Observations , 2008, 0802.4105.

[54]  M. Longair,et al.  Bright radio sources at 178 MHz: flux densities, optical identifications and the cosmological evolution of powerful radio galaxies , 1983 .

[55]  H. Rottgering,et al.  RAPID COEVAL BLACK HOLE AND HOST GALAXY GROWTH IN MRC 1138-262: THE HUNGRY SPIDER , 2012, 1206.5821.

[56]  M. Yun,et al.  A Large-Scale Jet and FR I Radio Source in a Spiral Galaxy: The Host Properties and External Environment , 2000, astro-ph/0012328.

[57]  J. Ables,et al.  Simultaneous observations of pulsar intensity variations at Parkes and Ootacamund. , 1974 .

[58]  Ž. Ivezić,et al.  The Two-Component Radio Luminosity Function of QSOs: Star Formation and AGN , 2011, 1107.3551.

[59]  THE ASTROPHYSICAL JOURNAL: ACCEPTED ON DECEMBER 5TH, 2002 Preprint typeset using L ATEX style emulateapj v. 26/01/00 ESTIMATING STAR FORMATION RATES FROM INFRARED AND RADIO LUMINOSITIES: THE ORIGIN OF THE RADIO–INFRARED CORRELATION , 2002 .

[60]  D. J. Saikia,et al.  EMU: Evolutionary Map of the Universe , 2011, Publications of the Astronomical Society of Australia.

[61]  Ž. Ivezić,et al.  THE TWO-COMPONENT RADIO LUMINOSITY FUNCTION OF QUASI-STELLAR OBJECTS: STAR FORMATION AND ACTIVE GALACTIC NUCLEUS , 2011 .

[62]  R. Wechsler,et al.  THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0–8 , 2012, 1207.6105.

[63]  F. Boulanger,et al.  Energetics of the molecular gas in the H_2 luminous radio galaxy 3C 326: Evidence for negative AGN feedback , 2010, 1003.3449.

[64]  S. Rawlings,et al.  A first sample of faint radio sources with virtually complete redshifts — I. Infrared images, the Hubble diagram and the alignment effect , 1997, astro-ph/9701023.

[65]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[66]  A. Eckart,et al.  Tracing the merger-driven evolution of active galaxies using the CJF sample , 2010, 1005.2177.

[67]  Kyoung-Soo Lee,et al.  THE NUMBER DENSITY AND MASS DENSITY OF STAR-FORMING AND QUIESCENT GALAXIES AT 0.4 ⩽ z ⩽ 2.2 , 2011, 1104.2595.

[68]  C. Carilli,et al.  THE VLA-COSMOS SURVEY. IV. DEEP DATA AND JOINT CATALOG , 2010, 1005.1641.

[69]  Garth D. Illingworth,et al.  AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2 , 2009, 0905.1692.

[70]  Mark Dickinson,et al.  No evidence for evolution in the Far-Infrared-Radio correlation out to z ~ 2 in the ECDFS , 2011, Proceedings of the International Astronomical Union.

[71]  S. E. Persson,et al.  A SUBSTANTIAL POPULATION OF MASSIVE QUIESCENT GALAXIES AT z ∼ 4 FROM ZFOURGE , 2013, 1312.4952.

[72]  Jordi Cepa,et al.  ON STAR FORMATION RATES AND STAR FORMATION HISTORIES OF GALAXIES OUT TO z ∼ 3 , 2011, 1106.5502.

[73]  Ewan Cameron,et al.  On the Estimation of Confidence Intervals for Binomial Population Proportions in Astronomy: The Simplicity and Superiority of the Bayesian Approach , 2010, Publications of the Astronomical Society of Australia.

[74]  J. Trump,et al.  Identifying Luminous AGN in Deep Surveys: Revised IRAC Selection Criteria , 2012 .

[75]  L. Kewley,et al.  KECK/MOSFIRE SPECTROSCOPIC CONFIRMATION OF A VIRGO-LIKE CLUSTER ANCESTOR AT z = 2.095 , 2014, 1410.0690.

[76]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[77]  D. Crenshaw,et al.  The host galaxies of narrow-line Seyfert-1s: Evidence for bar-driven fueling , 2004, Proceedings of the International Astronomical Union.

[78]  N. Ross,et al.  Radio galaxies in the 2SLAQ Luminous Red Galaxy survey – II. The stellar populations of radio-loud and radio-quiet LRGs , 2007, 0711.3486.

[79]  C. Breuck,et al.  Starburst and old stellar populations in the z ≃ 3.8 radio galaxies 4C 41.17 and TN J2007−1316 , 2013, 1301.1983.

[80]  Michigan.,et al.  ZFOURGE/CANDELS: ON THE EVOLUTION OF M* GALAXY PROGENITORS FROM z = 3 TO 0.5 , 2014, 1412.3806.

[81]  G. Kauffmann,et al.  Radio jets in galaxies with actively accreting black holes : new insights from the SDSS , 2007, 0709.2911.

[82]  G. Kauffmann,et al.  On the prevalence of radio-loud AGN in brightest cluster galaxies: implications for AGN heating of cooling flows , 2007 .

[83]  C. Carilli,et al.  The heating of gas in a galaxy cluster by X-ray cavities and large-scale shock fronts , 2005, Nature.

[84]  O. Fèvre,et al.  The VLA-COSMOS Survey. I. Radio Identifications from the Pilot Project , 2004, astro-ph/0408149.

[85]  Paul S. Smith,et al.  The Multiband Imaging Photometer for Spitzer (MIPS) , 2004 .

[86]  R. Norris,et al.  ACTIVE GALACTIC NUCLEUS FEEDBACK WORKS BOTH WAYS , 2013 .

[87]  S. Rawlings,et al.  A sample of 6C radio sources designed to find objects at redshift z>4– III. Imaging and the radio galaxy K–z relation , 2001, astro-ph/0106130.

[88]  K. Schawinski,et al.  Evolution of the most massive galaxies to z ∼ 0.6 – II. The link between radio AGN activity and star formation , 2012, 1208.1584.

[89]  F. Owen,et al.  CCD surface photometry of radio galaxies – I. FR class I and II sources , 1989 .

[90]  H. Rix,et al.  What Do We Learn from IRAC Observations of Galaxies at 2 < z < 3.5? , 2006, astro-ph/0609548.