Ideal chemical potential contribution in molecular dynamics simulations of the grand canonical ensemble

An extended system Hamiltonian for the grand canonical ensemble that includes the number dependence of the ideal chemical potential is investigated. Use of the ideal contribution explicitly in the equations of motion provides simpler and more stable equations of motion than previous grand molecular dynamics methods. We find the equations of motion remain quite stable even in gaseous conditions where mean field treatments of the ideal contribution provide a trivial result. The equations of motion are solved in real variable space as opposed to using virtual variables. Application of this simulation method with a Lennard-Jones fluid in the gas, fluid and solid phases is demonstrated.

[1]  B. Pettitt,et al.  Phase transitions of water at constant excess chemical potential : an application of grand molecular dynamics , 1994 .

[2]  R. J. Wolf,et al.  Monte Carlo simulations at constant chemical potential and pressure , 1993 .

[3]  C. W. Gear,et al.  Numerical initial value problem~ in ordinary differential eqttations , 1971 .

[4]  B. Alder,et al.  Phase Transition for a Hard Sphere System , 1957 .

[5]  D. Nicholson,et al.  Monte Carlo grand canonical ensemble calculation in a gas-liquid transition region for 12-6 Argon , 1975 .

[6]  B. Montgomery Pettitt,et al.  Molecular dynamics with a variable number of molecules , 1991 .

[7]  T. L. Hill,et al.  An Introduction to Statistical Thermodynamics , 1960 .

[8]  Mihaly Mezei,et al.  A cavity-biased (T, V, μ) Monte Carlo method for the computer simulation of fluids , 1980 .

[9]  David A. Kofke,et al.  Gibbs-Duhem integration: a new method for direct evaluation of phase coexistence by molecular simulation , 1993 .

[10]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[11]  B. Montgomery Pettitt,et al.  Grand molecular dynamics: A method for open systems , 1991 .

[12]  B. Montgomery Pettitt,et al.  Dynamic simulations of water at constant chemical potential , 1992 .

[13]  B. Widom,et al.  Potential-distribution theory and the statistical mechanics of fluids , 1982 .

[14]  D. J. Adams,et al.  Chemical potential of hard-sphere fluids by Monte Carlo methods , 1974 .

[15]  Aneesur Rahman,et al.  Correlations in the Motion of Atoms in Liquid Argon , 1964 .

[16]  J. R. Henderson,et al.  Statistical mechanics of fluids at spherical structureless walls , 1983 .

[17]  F. Stillinger,et al.  Molecular Dynamics Study of Liquid Water , 1971 .

[18]  J. R. Ray,et al.  Fourth adiabatic ensemble , 1990 .

[19]  S. Nosé,et al.  Constant pressure molecular dynamics for molecular systems , 1983 .

[20]  J. Jellinek Dynamics for nonconservative systems: ergodicity beyond the microcanonical ensemble , 1988 .

[21]  S. Weerasinghe,et al.  Absolute classical densities of states for very anharmonic systems and applications to the evaporation of rare gas clusters , 1993 .

[22]  M. Parrinello,et al.  Crystal structure and pair potentials: A molecular-dynamics study , 1980 .

[23]  J. Haile,et al.  A new adiabatic ensemble with particle fluctuations , 1981 .

[24]  L. Scriven,et al.  Efficient molecular simulation of chemical potentials , 1989 .

[25]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[26]  Winkler Extended-phase-space isothermal molecular dynamics: Canonical harmonic oscillator. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[27]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .