Thermoprotective adaptations are critical for arthropods feeding on warm-blooded hosts.

[1]  Chloé Lahondère,et al.  Effects of the Environmental Temperature on Aedes aegypti and Aedes albopictus Mosquitoes: A Review , 2018, Insects.

[2]  K. Beckmen,et al.  Hyperparasitism and Non-Nidicolous Mating by Male Ixodes angustus Ticks (Acari: Ixodidae). , 2018, Journal of medical entomology.

[3]  Chloé Lahondère,et al.  Keeping cool: Kissing bugs avoid cannibalism by thermoregulating. , 2018, Journal of insect physiology.

[4]  T. Schwan,et al.  Conspecific hyperparasitism: An alternative route for Borrelia hermsii transmission by the tick Ornithodoros hermsi. , 2017, Ticks and tick-borne diseases.

[5]  D. Denlinger,et al.  Evolutionary transition from blood feeding to obligate nonbiting in a mosquito , 2017, Proceedings of the National Academy of Sciences.

[6]  D. Denlinger,et al.  Bugs battle stress from hot blood , 2017, eLife.

[7]  G. Belev,et al.  Countercurrent heat exchange and thermoregulation during blood-feeding in kissing bugs , 2017, eLife.

[8]  J. H. Oliveira,et al.  The Dose Makes the Poison: Nutritional Overload Determines the Life Traits of Blood-Feeding Arthropods. , 2017, Trends in parasitology.

[9]  K. Paaijmans,et al.  The importance of temperature fluctuations in understanding mosquito population dynamics and malaria risk , 2017, Royal Society Open Science.

[10]  Yanhui Hu,et al.  FlyBase at 25: looking to the future , 2016, Nucleic Acids Res..

[11]  R. Paim,et al.  Functional evaluation of Heat Shock Proteins 70 (HSP70/HSC70) on Rhodnius prolixus (Hemiptera, Reduviidae) physiological responses associated with feeding and starvation. , 2016, Insect biochemistry and molecular biology.

[12]  Hedi Peterson,et al.  g:Profiler—a web server for functional interpretation of gene lists (2016 update) , 2016, Nucleic Acids Res..

[13]  J. Ouédraogo,et al.  Antibiotics in ingested human blood affect the mosquito microbiota and capacity to transmit malaria , 2015, Nature Communications.

[14]  C. Mbogo,et al.  Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya , 2012, Molecular ecology.

[15]  Chloé Lahondère,et al.  Mosquitoes Cool Down during Blood Feeding to Avoid Overheating , 2012, Current Biology.

[16]  Ying Wang,et al.  Dynamic Gut Microbiome across Life History of the Malaria Mosquito Anopheles gambiae in Kenya , 2011, PloS one.

[17]  D. Denlinger,et al.  Drinking a hot blood meal elicits a protective heat shock response in mosquitoes , 2011, Proceedings of the National Academy of Sciences.

[18]  K. Paaijmans,et al.  Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti , 2011, Proceedings of the National Academy of Sciences.

[19]  Mariangela Bonizzoni,et al.  RNA-seq analyses of blood-induced changes in gene expression in the mosquito vector species, Aedes aegypti , 2011, BMC Genomics.

[20]  A. James,et al.  aeGEPUCI: a database of gene expression in the dengue vector mosquito, Aedes aegypti , 2010, BMC Research Notes.

[21]  J. Dow,et al.  The developmental, molecular, and transport biology of Malpighian tubules. , 2010, Annual review of entomology.

[22]  J. Benoit,et al.  Dermal gland secretion improves the heat tolerance of the brown dog tick, Rhipicephalus sanguineus, allowing for their prolonged exposure to host body temperature , 2009 .

[23]  A. James,et al.  Microarray analysis of genes showing variable expression following a blood meal in Anopheles gambiae , 2005, Insect molecular biology.

[24]  Maureen Hillenmeyer,et al.  Gene expression patterns associated with blood-feeding in the malaria mosquito Anopheles gambiae , 2005, BMC Genomics.

[25]  J. Ribeiro,et al.  Blood-feeding arthropods: live syringes or invertebrate pharmacologists? , 1995, Infectious agents and disease.

[26]  Bernd Heinrich,et al.  The Hot-Blooded Insects: Strategies and Mechanisms of Thermoregulation , 1993 .

[27]  M. Lehane,et al.  The biology of blood-sucking in insects , 1991 .

[28]  G. Schaub,et al.  Direct transmission of Trypanosoma cruzi between vectors of Chagas' disease. , 1988, Acta tropica.

[29]  T. Scott,et al.  Host Defensive Behaviour and the Feeding Success of Mosquitoes , 1987 .

[30]  H. Briegel,et al.  Concentration of host blood protein during feeding by anopheline mosquitoes (Diptera: Culicidae). , 1985, Journal of medical entomology.

[31]  Y. Balashov Interaction between blood-sucking arthropods and their hosts, and its influence on vector potential. , 1984 .

[32]  G. M. Khalil,et al.  Hyperparasitism in Ornithodoros erraticus. , 1983, The Journal of parasitology.

[33]  R. Carter,et al.  Control of gamete formation (exflagellation) in malaria parasites. , 1977, Science.

[34]  J. Vanderberg,et al.  Effects of temperature on sporogonic development of Plasmodium berghei. , 1966, The Journal of parasitology.

[35]  A. Okasha Effects of High Temperature in Rhodnius prolixus (Stål). , 1964, Nature.

[36]  G. H. Ball,et al.  TEMPERATURE STRESSES ON THE MOSQUITO PHASE OF PLASMODIUM RELICTUM. , 1964, The Journal of parasitology.