The layout of a bacterial genome

Recently the mismatch between our newly acquired capacity to synthetize DNA at genome scale, and our low capacity to design ab initio a functional genome has become conspicuous. This essay gathers a variety of constraints that globally shape natural genomes, with a focus on eubacteria. These constraints originate from chromosome replication (leading/lagging strand asymmetry; gene dosage gradient from origin to terminus; collisions with the transcription complexes), from biased codon usage, from noise control in gene expression, and from genome layout for co‐functional genes. On the basis of this analysis, lessons are drawn for full genome design.

[1]  M. O’Donnell,et al.  The replisome uses mRNA as a primer after colliding with RNA polymerase , 2008, Nature.

[2]  M. Salas,et al.  Resolution of head‐on collisions between the transcription machinery and bacteriophage Φ29 DNA polymerase is dependent on RNA polymerase translocation , 1999, The EMBO journal.

[3]  Claude-Alain H. Roten,et al.  Genometric analyses of the organization of circular chromosomes: a universal pressure determines the direction of ribosomal RNA genes transcription relative to chromosome replication. , 2004, Gene.

[4]  P. Fraser,et al.  Nuclear organization of the genome and the potential for gene regulation , 2007, Nature.

[5]  R. T. Dame,et al.  The role of nucleoid‐associated proteins in the organization and compaction of bacterial chromatin , 2005, Molecular microbiology.

[6]  Alessandra Carbone,et al.  Chromosomal periodicity and positional networks of genes in Escherichia coli , 2010 .

[7]  S. Leibler,et al.  DNA looping and physical constraints on transcription regulation. , 2003, Journal of molecular biology.

[8]  R. Losick,et al.  Bacillus Subtilis and Its Closest Relatives: From Genes to Cells , 2001 .

[9]  Alessandra Carbone,et al.  Codon adaptation index as a measure of dominating codon bias , 2003, Bioinform..

[10]  V. Norris,et al.  Autocatalytic gene expression occurs via transertion and membrane domain formation and underlies differentiation in bacteria: a model. , 1995, Journal of molecular biology.

[11]  P. Bourgine,et al.  Topological and causal structure of the yeast transcriptional regulatory network , 2002, Nature Genetics.

[12]  Iain G. Duggin,et al.  Termination of Chromosome Replication , 2002 .

[13]  Adam P. Arkin,et al.  Interruptions in gene expression drive highly expressed operons to the leading strand of DNA replication , 2005, Nucleic acids research.

[14]  Thomas H Segall-Shapiro,et al.  Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome , 2010, Science.

[15]  J. Raser,et al.  Noise in Gene Expression: Origins, Consequences, and Control , 2005, Science.

[16]  C. A. Thomas,et al.  Visualization of Bacterial Genes in Action , 1970, Science.

[17]  Eduardo P C Rocha,et al.  Replication‐associated gene dosage effects shape the genomes of fast‐growing bacteria but only for transcription and translation genes , 2006, Molecular microbiology.

[18]  P. Sharp,et al.  Proteome composition and codon usage in spirochaetes: species-specific and DNA strand-specific mutational biases. , 1999, Nucleic acids research.

[19]  M. Gouy,et al.  Codon catalog usage and the genome hypothesis. , 1980, Nucleic acids research.

[20]  Eduardo P C Rocha,et al.  Essentiality, not expressiveness, drives gene-strand bias in bacteria , 2003, Nature Genetics.

[21]  Natalio Krasnogor,et al.  The ten grand challenges of synthetic life , 2011, Systems and Synthetic Biology.

[22]  Jianzhi Zhang,et al.  Impact of gene expression noise on organismal fitness and the efficacy of natural selection , 2011, Proceedings of the National Academy of Sciences.

[23]  H. Bremer Modulation of Chemical Composition and Other Parameters of the Cell by Growth Rate , 1999 .

[24]  François Képès,et al.  Transcription/replication collisions cause bacterial transcription units to be longer on the leading strand of replication , 2004, Bioinform..

[25]  T Gojobori,et al.  Codon usage tabulated from the GenBank Genetic Sequence Data. , 1988, Nucleic acids research.

[26]  P. Sharp,et al.  The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications. , 1987, Nucleic acids research.

[27]  J. Gralla,et al.  Changes in the linking number of supercoiled DNA accompany growth transitions in Escherichia coli , 1987, Journal of bacteriology.

[28]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[29]  D. Searls,et al.  Robots in invertebrate neuroscience , 2002, Nature.

[30]  S. Bell,et al.  Termination structures in the Escherichia coli chromosome replication fork trap. , 2009, Journal of molecular biology.

[31]  A. Grossman,et al.  Chromosome Replication and Segregation , 2002 .

[32]  S. French,et al.  Consequences of replication fork movement through transcription units in vivo. , 1992, Science.

[33]  B. Müller-Hill,et al.  High local protein concentrations at promoters: strategies in prokaryotic and eukaryotic cells. , 2001, BioEssays : news and reviews in molecular, cellular and developmental biology.

[34]  B. Alberts,et al.  Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex , 1995, Science.

[35]  L. Shapiro,et al.  The structure and function of the bacterial chromosome. , 2005, Current opinion in genetics & development.

[36]  T. Pan,et al.  Exploring the regulation of tRNA distribution on the genomic scale. , 2004, Journal of molecular biology.

[37]  B. Michel,et al.  The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo , 2009, The EMBO journal.

[38]  T Gojobori,et al.  Codon usage tabulated from the GenBank genetic sequence data. , 1991, Nucleic acids research.

[39]  V. Daubin,et al.  Comparative genomics and the evolution of prokaryotes. , 2007, Trends in microbiology.

[40]  J. Rebollo,et al.  Detection and possible role of two large nondivisible zones on the Escherichia coli chromosome. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[41]  A Carbone,et al.  Codon bias signatures, organization of microorganisms in codon space, and lifestyle. , 2005, Molecular biology and evolution.

[42]  D. R. Zeigler,et al.  Orientation of genes in the Bacillus subtilis chromosome. , 1990, Genetics.

[43]  A. Arkin,et al.  Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. , 1998, Genetics.

[44]  S. Cooper,et al.  Chromosome replication and the division cycle of Escherichia coli B/r. , 1968, Journal of molecular biology.

[45]  H. E. Kubitschek,et al.  Chromosome Replication and the Division Cycle of Escherichia coli B/r , 1971, Journal of bacteriology.

[46]  E. Rocha The organization of the bacterial genome. , 2008, Annual review of genetics.

[47]  J. Derisi,et al.  Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise , 2006, Nature.

[48]  T. Ikemura Codon usage and tRNA content in unicellular and multicellular organisms. , 1985, Molecular biology and evolution.

[49]  A Danchin,et al.  Codon usage and lateral gene transfer in Bacillus subtilis. , 1999, Current opinion in microbiology.

[50]  Andrew Travers,et al.  Gene order and chromosome dynamics coordinate spatiotemporal gene expression during the bacterial growth cycle , 2011, Proceedings of the National Academy of Sciences.

[51]  F. Blattner,et al.  Emergent Properties of Reduced-Genome Escherichia coli , 2006, Science.

[52]  N. Campo,et al.  Chromosomal constraints in Gram‐positive bacteria revealed by artificial inversions , 2004, Molecular microbiology.

[53]  R. Lloubès,et al.  Translation is a non-uniform process. Effect of tRNA availability on the rate of elongation of nascent polypeptide chains. , 1984, Journal of molecular biology.

[54]  Tobias Warnecke,et al.  Error prevention and mitigation as forces in the evolution of genes and genomes , 2011, Nature Reviews Genetics.

[55]  François Képès,et al.  Periodic transcriptional organization of the E.coli genome. , 2004, Journal of molecular biology.

[56]  Jean Peccoud,et al.  Modeling Structure-Function Relationships in Synthetic DNA Sequences using Attribute Grammars , 2009, PLoS Comput. Biol..

[57]  Theodore J. Perkins,et al.  A General Model of Codon Bias Due to GC Mutational Bias , 2010, PloS one.

[58]  Matthew W Lux,et al.  Genetic design automation: engineering fantasy or scientific renewal? , 2012, Trends in biotechnology.

[59]  Daniel Segrè,et al.  Chromosomal periodicity of evolutionarily conserved gene pairs , 2007, Proceedings of the National Academy of Sciences.

[60]  Ruth Hershberg,et al.  Selection on codon bias. , 2008, Annual review of genetics.

[61]  R. G. Lloyd,et al.  RNA polymerase modulators and DNA repair activities resolve conflicts between DNA replication and transcription. , 2005, Molecular cell.

[62]  Ivan Junier,et al.  Spatial and Topological Organization of DNA Chains Induced by Gene Co-localization , 2010, PLoS Comput. Biol..

[63]  John Kuriyan,et al.  The origin of protein interactions and allostery in colocalization , 2007, Nature.

[64]  C. Dorman Regulation of transcription by DNA supercoiling in Mycoplasma genitalium: global control in the smallest known self‐replicating genome , 2011, Molecular microbiology.

[65]  E. Gilson,et al.  A haploid-specific transcriptional response to irradiation in Saccharomyces cerevisiae , 2005, Nucleic acids research.

[66]  S. Leibler,et al.  Bacterial Persistence as a Phenotypic Switch , 2004, Science.

[67]  K J Marians,et al.  The Escherichia coli preprimosome and DNA B helicase can form replication forks that move at the same rate. , 1987, The Journal of biological chemistry.

[68]  François Képès,et al.  Periodic epi-organization of the yeast genome revealed by the distribution of promoter sites. , 2003, Journal of molecular biology.

[69]  Ivan Junier,et al.  Periodic pattern detection in sparse boolean sequences , 2010, Algorithms for Molecular Biology.

[70]  Susumu Hirose,et al.  Initiation site of deoxyribonucleotide polymerization at the replication origin of the Escherichia coli chromosome , 2004, Molecular and General Genetics MGG.

[71]  N. Kleckner,et al.  E. coli oriC and the dnaA gene promoter are sequestered from dam methyltransferase following the passage of the chromosomal replication fork , 1990, Cell.

[72]  M. Nomura,et al.  Chromosomal locations of the genes for rRNA in Escherichia coli K-12 , 1982, Journal of bacteriology.

[73]  Richard A Stein,et al.  Organization of supercoil domains and their reorganization by transcription , 2005, Molecular microbiology.

[74]  H. A. Boer,et al.  Growth-rate-dependent regulation of ribosome synthesis in E. coli: Expression of the lacZ and galK genes fused to ribosomal promoters , 1981, Cell.

[75]  L. Hurst,et al.  Evolution of chromosome organization driven by selection for reduced gene expression noise , 2007, Nature Genetics.

[76]  David M. MacAlpine,et al.  Co-Orientation of Replication and Transcription Preserves Genome Integrity , 2010, PLoS genetics.

[77]  Cédric Vaillant,et al.  Transcription-Based Solenoidal Model of Chromosomes , 2004, Complexus.

[78]  J. Rosner,et al.  Genomics of the marA/soxS/rob regulon of Escherichia coli: identification of directly activated promoters by application of molecular genetics and informatics to microarray data , 2002, Molecular microbiology.

[79]  Ivan Junier,et al.  Genomic organization of evolutionarily correlated genes in bacteria: limits and strategies. , 2012, Journal of molecular biology.

[80]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[81]  Mikhail S. Gelfand,et al.  Identification of replication origins in prokaryotic genomes , 2008, Briefings Bioinform..

[82]  J. Gray,et al.  Effects of chromosomal inversion on cell fitness in Escherichia coli K-12. , 1988, Genetics.

[83]  D. Kennell,et al.  Evidence for variable rates of ribosome movement in Escherichia coli. , 1976, Journal of molecular biology.

[84]  O. Miller,et al.  rRNA transcription rate in Escherichia coli , 1991, Journal of bacteriology.

[85]  M. O’Donnell,et al.  Replisome structure and conformational dynamics underlie fork progression past obstacles. , 2009, Current opinion in cell biology.

[86]  Jean Peccoud,et al.  A syntactic model to design and verify synthetic genetic constructs derived from standard biological parts , 2007, Bioinform..

[87]  Andrew Travers,et al.  DNA supercoiling — a global transcriptional regulator for enterobacterial growth? , 2005, Nature Reviews Microbiology.

[88]  F. Boccard,et al.  Spatial arrangement and macrodomain organization of bacterial chromosomes , 2005, Molecular microbiology.