Sliding and rolling of yield stress fluid droplets on highly slippery lubricated surfaces.

[1]  S. Succi,et al.  On the fate of a drop jumping over a gap , 2022, Journal of Fluid Mechanics.

[2]  D. Ferraro,et al.  Oscillatory motion of viscoelastic drops on slippery lubricated surfaces , 2022, Communications Physics.

[3]  G. Petekidis,et al.  Deformation profiles and microscopic dynamics of complex fluids during oscillatory shear experiments. , 2021, Soft matter.

[4]  C. Barentin,et al.  Dynamic arrest during the spreading of a yield stress fluid drop , 2021 .

[5]  F. Toschi,et al.  Continuum modeling of shear startup in soft glassy materials. , 2021, Physical review. E.

[6]  R. Osellame,et al.  Yield stress "in a flash": investigation of nonlinearity and yielding in soft materials with an optofluidic microrheometer. , 2021, Soft matter.

[7]  R. Kwak,et al.  Decoupled rolling, sliding and sticking of a viscoplastic drop on a superhydrophobic surface , 2020, Journal of Fluid Mechanics.

[8]  B. Stoeber,et al.  Spreading of viscoplastic droplets , 2020, Journal of Fluid Mechanics.

[9]  V. Trappe,et al.  Variations of the Herschel–Bulkley exponent reflecting contributions of the viscous continuous phase to the shear rate-dependent stress of soft glassy materials , 2020 .

[10]  P. Wong,et al.  Viscoelastic solid-repellent coatings for extreme water saving and global sanitation , 2019, Nature Sustainability.

[11]  D. Ferraro,et al.  Motion of Newtonian drops deposited on liquid-impregnated surfaces induced by vertical vibrations , 2019, Journal of Fluid Mechanics.

[12]  E. Gogolides,et al.  Motion of Drops with Different Viscosities on Micro‐Nanotextured Surfaces of Varying Topography and Wetting Properties , 2019, Advanced Functional Materials.

[13]  Christophe Clanet,et al.  Superhydrophobic frictions , 2019, Proceedings of the National Academy of Sciences.

[14]  C. Barentin,et al.  Wall slip regimes in jammed suspensions of soft microgels , 2019, Physical Review Fluids.

[15]  D. P. Regan,et al.  Droplet manipulation with bioinspired liquid-infused surfaces: A review of recent progress and potential for integrated detection , 2019, Current Opinion in Colloid & Interface Science.

[16]  P. Levkin,et al.  Slippery Lubricant‐Infused Surfaces: Properties and Emerging Applications , 2018, Advanced Functional Materials.

[17]  D. Ferraro,et al.  Dynamics of Ferrofluid Drops on Magnetically Patterned Surfaces. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[18]  V. Trappe,et al.  Colloidal fibers as structurant for worm-like micellar solutions , 2018, Colloid and Polymer Science.

[19]  H. Kusumaatmaja,et al.  Drop Dynamics on Liquid-Infused Surfaces: The Role of the Lubricant Ridge. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[20]  J. Rothstein,et al.  Viscoelastic drops moving on hydrophilic and superhydrophobic surfaces. , 2018, Journal of colloid and interface science.

[21]  K. Varanasi,et al.  Mobility of Yield Stress Fluids on Lubricant-Impregnated Surfaces. , 2017, ACS applied materials & interfaces.

[22]  Christophe Clanet,et al.  Drop friction on liquid-infused materials. , 2017, Soft matter.

[23]  Nenad Miljkovic,et al.  Lubricant-Infused Surfaces for Low-Surface-Tension Fluids: Promise versus Reality. , 2017, ACS applied materials & interfaces.

[24]  Jaakko V. I. Timonen,et al.  Oleoplaning droplets on lubricated surfaces , 2017, Nature Physics.

[25]  G. Mistura,et al.  Drop mobility on chemically heterogeneous and lubricant-impregnated surfaces , 2017 .

[26]  Pierre Saramito,et al.  Progress in numerical simulation of yield stress fluid flows , 2017, Rheologica Acta.

[27]  M. Brinkmann,et al.  Deviation of sliding drops at a chemical step. , 2016, Soft matter.

[28]  M. Sbragaglia,et al.  Stretching of viscoelastic drops in steady sliding. , 2016, Soft matter.

[29]  Joanna Aizenberg,et al.  Design of anti-icing surfaces: smooth, textured or slippery? , 2016 .

[30]  B. Stoeber,et al.  Slip of Spreading Viscoplastic Droplets. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[31]  Daniel C Leslie,et al.  A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling , 2014, Nature Biotechnology.

[32]  P. Coussot,et al.  Yield stress fluid flows: A review of experimental data , 2014 .

[33]  Luca Biferale,et al.  Stick-slip sliding of water drops on chemically heterogeneous surfaces. , 2013, Physical review letters.

[34]  Gareth H. McKinley,et al.  Droplet mobility on lubricant-impregnated surfaces , 2013 .

[35]  Sushant Anand,et al.  Enhanced condensation on lubricant-impregnated nanotextured surfaces. , 2012, ACS nano.

[36]  David Quéré,et al.  Slippery pre-suffused surfaces , 2011 .

[37]  Sumesh P. Thampi,et al.  Do liquid drops roll or slide on inclined surfaces? , 2011, Langmuir : the ACS journal of surfaces and colloids.

[38]  Sindy K. Y. Tang,et al.  Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity , 2011, Nature.

[39]  D. Ferraro,et al.  Suspension of water droplets on individual pillars. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[40]  J. Yeomans,et al.  Drop dynamics on hydrophobic and superhydrophobic surfaces. , 2010, Faraday discussions.

[41]  E. Charlaix,et al.  Nanofluidics, from bulk to interfaces. , 2009, Chemical Society reviews.

[42]  D. Bonn,et al.  Wetting and Spreading , 2009 .

[43]  P. Coussot,et al.  Macroscopic vs. local rheology of yield stress fluids , 2009 .

[44]  Michael Newton,et al.  Progess in superhydrophobic surface development. , 2008, Soft matter.

[45]  L. Limat,et al.  Shape and motion of drops sliding down an inclined plane , 2005, Journal of Fluid Mechanics.

[46]  T. Waigh Microrheology of complex fluids , 2005 .

[47]  J. M. Rallison,et al.  Sliding, slipping and rolling: the sedimentation of a viscous drop down a gently inclined plane , 2004, Journal of Fluid Mechanics.

[48]  Achim Wixforth,et al.  Acoustic manipulation of small droplets , 2004, Analytical and bioanalytical chemistry.

[49]  R. Bonnecaze,et al.  Slip and flow in soft particle pastes. , 2004, Physical review letters.

[50]  Ho-Young Kim,et al.  Sliding of liquid drops down an inclined solid surface. , 2002, Journal of colloid and interface science.

[51]  D. Quéré,et al.  Viscous drops rolling on a tilted non-wettable solid , 1999 .

[52]  M. Cloître,et al.  Concentration dependence of the low-shear viscosity of polyelectrolyte micro-networks: From hard spheres to soft microgels , 1999 .

[53]  J. Viovy,et al.  Controlling the distance of highly confined droplets in a capillary by interfacial tension for merging on-demand. , 2018, Lab on a chip.

[54]  P. Gennes,et al.  Capillarity and Wetting Phenomena , 2004 .

[55]  Yves Pomeau,et al.  Rolling droplets , 1999 .