Differential geometric methods in variable-structure control

This article presents a differential geometric approach for the design of sliding modes in non-linear variable-structure feedback systems. Coordinate-free characterizations of local existence conditions for sliding regimes, and a geometric reformulation of some of its most salient features are presented. The approach uses basic notions from differential geometry involving vector fields, distributions and 1-forms. Both single- and multiple-input cases are treated with some illustrative examples.

[1]  B. Draenovi The invariance conditions in variable structure systems , 1969 .

[2]  J. Wood Power conversion in electrical networks , 1974 .

[3]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[4]  R. Steele,et al.  Delta Modulation Systems , 1975 .

[5]  U. Itkis,et al.  Control systems of variable structure , 1976 .

[6]  Kar-Keung D. Young Controller Design for a Manipulator Using Theory of Variable Structure Systems , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[7]  S. Billings,et al.  Analysis and design of variable structure systems using a geometric approach , 1983 .

[8]  J. J. Slotine,et al.  Tracking control of non-linear systems using sliding surfaces with application to robot manipulators , 1983, 1983 American Control Conference.

[9]  L. Hunt,et al.  Global transformations of nonlinear systems , 1983 .

[10]  R. Marino An example of a nonlinear regulator , 1984 .

[11]  Jean-Jacques E. Slotine,et al.  Sliding controller design for non-linear systems , 1984 .

[12]  T. Dwyer Exact nonlinear control of large angle rotational maneuvers , 1984 .

[13]  J. Grizzle Controlled invariance for discrete-time nonlinear systems with an application to the disturbance decoupling problems , 1985 .

[14]  S. Marcus,et al.  The structure of nonlinear control systems possessing symmetries , 1985 .

[15]  A. Isidori Nonlinear Control Systems: An Introduction , 1986 .

[16]  M. Spong,et al.  Robust Control Design Techniques for a Class of Nonlinear Systems , 1986, 1986 American Control Conference.

[17]  Riccardo Marino,et al.  Nonlinear control techniques for flexible joint manipulators: A single link case study , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[18]  S. Peresada,et al.  Feedback linearizing control of switched reluctance motors , 1987 .

[19]  H. Sira-Ramirez,et al.  Variable structure controller design for spacecraft nutation damping , 1987 .

[20]  H. Sira-Ramírez,et al.  Sliding Regimes on Slow Manifolds of Systems with Fast Actuators , 1987, 1987 American Control Conference.