Generalized Probabilistic Scale Space for Image Restoration

A novel generalized sampling-based probabilistic scale space theory is proposed for image restoration. We explore extending the definition of scale space to better account for both noise and observation models, which is important for producing accurately restored images. A new class of scale-space realizations based on sampling and probability theory is introduced to realize this extended definition in the context of image restoration. Experimental results using 2-D images show that generalized sampling-based probabilistic scale-space theory can be used to produce more accurate restored images when compared with state-of-the-art scale-space formulations, particularly under situations characterized by low signal-to-noise ratios and image degradation.

[1]  Tony Lindeberg,et al.  Enhancement of Fingerprint Images using Shape-Adapted Scale-Space Operators , 1997, Gaussian Scale-Space Theory.

[2]  Zia-ur Rahman,et al.  A multiscale retinex for bridging the gap between color images and the human observation of scenes , 1997, IEEE Trans. Image Process..

[3]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[5]  Andrew P. Witkin,et al.  Scale-space filtering: A new approach to multi-scale description , 1984, ICASSP.

[6]  Tohru Ishizaka,et al.  Segmentation of natural images using anisotropic diffusion and linking of boundary edges , 1998, Pattern Recognit..

[7]  Zhou Wang,et al.  Image Quality Assessment: From Error Measurement to Structural Similarity , 2004 .

[8]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[9]  Alan C. Bovik,et al.  Smoothing low-SNR molecular images via anisotropic median-diffusion , 2002, IEEE Transactions on Medical Imaging.

[10]  Pierre Vandergheynst,et al.  Multiresolution segmentation of natural images: from linear to nonlinear scale-space representations , 2004, IEEE Transactions on Image Processing.

[11]  Yongmin Kim,et al.  Edge-guided boundary delineation in prostate ultrasound images , 2000, IEEE Transactions on Medical Imaging.

[12]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[13]  Jean-Michel Morel,et al.  Nonlocal Image and Movie Denoising , 2008, International Journal of Computer Vision.

[14]  Tony Lindeberg,et al.  Edge Detection and Ridge Detection with Automatic Scale Selection , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Tony Lindeberg,et al.  Fully Automatic Segmentation of MRI Brain Images Using Probabilistic Anisotropic Diffusion and Multi-scale Watersheds , 2003, Scale-Space.

[16]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[17]  R. Manmatha,et al.  A scale space approach for automatically segmenting words from historical handwritten documents , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Richard Szeliski,et al.  PSF estimation using sharp edge prediction , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Simon R. Arridge,et al.  Multi-Spectral Probabilistic Diffusion Using Bayesian Classification , 1997, Scale-Space.

[20]  Yuzhong Shen,et al.  Noise reduction and edge detection via kernel anisotropic diffusion , 2008, Pattern Recognit. Lett..

[21]  Tony Lindeberg,et al.  Fingerprint enhancement by shape adaptation of scale-space operators with automatic scale selection , 2000, IEEE Trans. Image Process..

[22]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[23]  Yehoshua Y. Zeevi,et al.  Image enhancement and denoising by complex diffusion processes , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Guy Gilboa,et al.  Nonlinear Scale Space with Spatially Varying Stopping Time , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .